In this study,K and L shell photoeffect cross-sections were measured for the elements in the range of 50≤Z≤65at 59.5keV.These photoeffect cross-sections were measured by using the experimentalσKαproduction cross-s...In this study,K and L shell photoeffect cross-sections were measured for the elements in the range of 50≤Z≤65at 59.5keV.These photoeffect cross-sections were measured by using the experimentalσKαproduction cross-section values measured in this paper and two different K shell fluorescence yield values in the literature.The results were compared with the calculated theoretical values.The values were plotted versus atomic number.展开更多
The elliptical cross-section ogive-nose projectile(ECOP) has recently attracted attention because it is well suited to the flattened shape of earth-penetrating weapons. However, the penetration performance of ECOPs ha...The elliptical cross-section ogive-nose projectile(ECOP) has recently attracted attention because it is well suited to the flattened shape of earth-penetrating weapons. However, the penetration performance of ECOPs has not been completely understood. The objective of this study was to investigate the penetration performance of ECOPs into concrete targets using a theoretical method. A general geometric model of ECOPs was introduced, and closed-form penetration equations were derived according to the dynamic cavity-expansion theory. The model was validated by comparing the predicted penetration depths with test data, and the maximum deviation was 15.8%. The increment in the penetration depth of the ECOP was evaluated using the proposed model, and the effect of the majoreminor axis ratio on the increment was examined. Additionally, the mechanism of the penetration-depth increment was investigated with respect to the caliber radius head, axial stress, and resistance.展开更多
The present study numerically explored the aerodynamic performance of a novel railway tunnel with a partially reduced cross-section.The impact of the reduction rate of the tunnel cross-section on wave transmissions wa...The present study numerically explored the aerodynamic performance of a novel railway tunnel with a partially reduced cross-section.The impact of the reduction rate of the tunnel cross-section on wave transmissions was analyzed based on the three-dimensional,unsteady,compressible,and RNG k-εturbulence model.The results highlight that the reduction rate(S)most affects pressure configurations at the middle tunnel segment,followed by the enlarged segments near access,and finally the exit.The strength of the newly generated compression wave at the tunnel junction where the cross-section abruptly changes increases exponentially with the decrease of the cross-sectional area.The maximum peak-to-peak pressureΔP on the tunnel and train surface for non-uniform tunnels is reduced by 10.7%and 13.8%,respectively,compared with those of equivalent uniform tunnels.Overall,the economic analysis suggests that the aerodynamic performance of the developed tunnel prototype surpasses those conventional tunnels based on the same excavated volume.展开更多
Analyzing the mass of behind-armor debris (BAD) generated by Rolled Homogeneous Armor (RHA) subjected to normal penetration of variable cross-section Explosively Formed Projectile (EFP) is the purpose of this paper. S...Analyzing the mass of behind-armor debris (BAD) generated by Rolled Homogeneous Armor (RHA) subjected to normal penetration of variable cross-section Explosively Formed Projectile (EFP) is the purpose of this paper. So theoretical analysis, numerical simulation and experimental data are combined to analyze the influence of variable cross-section characteristic on the time history of crater radius. Moreover the relationships between time history of crater radius (as well as mass of BAD) and the thickness of RHA (from 30mm to 70 mm) and the impact velocity of EFP (1650 m/s to 1860 m/s) are also investigated. The results indicate that: 1) being compared to the variable cross-section characteristic is ignored, the theoretical time history of crater radius is in better agreement with the simulation results when the variable cross-section characteristic is considered;2) being compared to the other three conditions of plug, the theoretical mass of BAD is in the best agreement with the simulation results when the shape of plug is frustum of a cone and the angle between generatrix and bottom is 45- and the axial length of mushroom is considered.展开更多
A new method called multi-frequency holography (MFH) for two-dimensional radar cross-section imaging of rotating objects is introduced, in which a constant coherent reference signal from transmitted signal is added in...A new method called multi-frequency holography (MFH) for two-dimensional radar cross-section imaging of rotating objects is introduced, in which a constant coherent reference signal from transmitted signal is added into received signal over certain frequency-width. With the MFH only the intensity of received composite signals needs to be measured. Both imaging situations of far field and near field are considered in details. Special restrictions about the MFH are also discussed and simulated by numerical computation. Examples of numerical simulation show that the method is effective, applicable and perspective.展开更多
In this study;the effect of the electron density over the Br atoms raising with increasing number of CH_2 group using the results of the K X-ray cross-sections and average fluorescence yields of bromine in quaternary-...In this study;the effect of the electron density over the Br atoms raising with increasing number of CH_2 group using the results of the K X-ray cross-sections and average fluorescence yields of bromine in quaternary-imidazole ring.In the experimental set-up,50 mCi ^(241) Am source and a collimated Ultra-LEGe detector were used.The electron density on the Br atoms raises according to the number of the CH_2 groups on the contrary of the inductive effect.The decreasing of the X-ray fluorescence parameters is interested with the increasing the electron density of Br atoms.展开更多
Different types of nuclear parameters and corrosion behavior were deduced for carbon steel(AISI 1018),austenitic(304 SS),and duplex(2507 SS)stainless steel alloys.Three types of neutron energies as well as nine gamma ...Different types of nuclear parameters and corrosion behavior were deduced for carbon steel(AISI 1018),austenitic(304 SS),and duplex(2507 SS)stainless steel alloys.Three types of neutron energies as well as nine gamma ray energy lines(121.78-1407.92 keV)were used to evaluate the macroscopic neutron cross-sections(∑,cm^-1)and mass attenuation coefficients[σ,cm^2·g^-1)of gamma ray respectively.The corrosion behavior was investigated using different electrochemical techniques.The results showed that the stainless-steel alloys had a good attitude than that of carbon steel alloy for neutron and gamma ray parameters,especially the duplex stainless steel.The calculated values of mass attenuation coefficient using WinXcom computer program(Version 3.1),exhibited a very good agreement with the experimental values of that parameters.Moreover,the results indicated that duplex stainless-steel exhibited corrosion resistance higher than 304 SS and AISI 1018 steel alloys.展开更多
For the static analysis of the sinking stage curved beam, a finite difference model was presented based on the proposed revised Vlasov equations. First, revised Vlasov equations for thin-walled curved beams with close...For the static analysis of the sinking stage curved beam, a finite difference model was presented based on the proposed revised Vlasov equations. First, revised Vlasov equations for thin-walled curved beams with closed sections were deduced considering the shear strain on the mid-surface of the cross-section. Then, the finite difference formulation of revised Vlasov equations was implemented with the parabolic interpolation based on Taylor series. At last, the finite difference model was built by substituting geometry and boundary conditions of the sinking stage curved beam into the finite difference formulation. The validity of present work is confirmed by the published literature and ANSYS simulation results. It can be concluded that revised Vlasov equations are more accurate than the original one in the analysis of thin-walled beams with closed sections, and that present finite difference model is applicable in the evaluation of the sinking stage curved beam.展开更多
The key technique of a kinetic energy rod(KER) warhead is to control the flight attitude of rods. The rods are usually designed to different shapes. A new conceptual KER named profiled rod which has large L/D ratio is...The key technique of a kinetic energy rod(KER) warhead is to control the flight attitude of rods. The rods are usually designed to different shapes. A new conceptual KER named profiled rod which has large L/D ratio is described in this paper. The elastic dynamic equations of this profiled rod flying at high velocity after detonation are set up on the basis of Euler-Bernoulli beam, and the aeroelastic deformation of profiled rod is calculated by semi-analytical method for calculating the vibration characteristics of variable cross-section beam. In addition, the aeroelastic deformation of the undeformed profiled rod and the aeroelastic deformation of deformed profiled rod which is caused by the detonation of explosive are simulated by computational fluid dynamic and finite element method(CFD/FEM), respectively. A satisfactory agreement of these two methods is obtained by the comparison of two methods. The results show that the semi-analytical method for calculating the vibration characteristics of variable cross-section beam is applied to analyze the aeroelastic deformation of profiled rod flying at high velocity.展开更多
文摘In this study,K and L shell photoeffect cross-sections were measured for the elements in the range of 50≤Z≤65at 59.5keV.These photoeffect cross-sections were measured by using the experimentalσKαproduction cross-section values measured in this paper and two different K shell fluorescence yield values in the literature.The results were compared with the calculated theoretical values.The values were plotted versus atomic number.
基金supported by the National Natural Science Foundation of China (Nos. 11772269, 11802248, and 11872318)。
文摘The elliptical cross-section ogive-nose projectile(ECOP) has recently attracted attention because it is well suited to the flattened shape of earth-penetrating weapons. However, the penetration performance of ECOPs has not been completely understood. The objective of this study was to investigate the penetration performance of ECOPs into concrete targets using a theoretical method. A general geometric model of ECOPs was introduced, and closed-form penetration equations were derived according to the dynamic cavity-expansion theory. The model was validated by comparing the predicted penetration depths with test data, and the maximum deviation was 15.8%. The increment in the penetration depth of the ECOP was evaluated using the proposed model, and the effect of the majoreminor axis ratio on the increment was examined. Additionally, the mechanism of the penetration-depth increment was investigated with respect to the caliber radius head, axial stress, and resistance.
基金Project(51975591)supported by the National Natural Science Foundation of China。
文摘The present study numerically explored the aerodynamic performance of a novel railway tunnel with a partially reduced cross-section.The impact of the reduction rate of the tunnel cross-section on wave transmissions was analyzed based on the three-dimensional,unsteady,compressible,and RNG k-εturbulence model.The results highlight that the reduction rate(S)most affects pressure configurations at the middle tunnel segment,followed by the enlarged segments near access,and finally the exit.The strength of the newly generated compression wave at the tunnel junction where the cross-section abruptly changes increases exponentially with the decrease of the cross-sectional area.The maximum peak-to-peak pressureΔP on the tunnel and train surface for non-uniform tunnels is reduced by 10.7%and 13.8%,respectively,compared with those of equivalent uniform tunnels.Overall,the economic analysis suggests that the aerodynamic performance of the developed tunnel prototype surpasses those conventional tunnels based on the same excavated volume.
基金financially supported by the National Natural Science Foundation of China(Grant No.11372136)
文摘Analyzing the mass of behind-armor debris (BAD) generated by Rolled Homogeneous Armor (RHA) subjected to normal penetration of variable cross-section Explosively Formed Projectile (EFP) is the purpose of this paper. So theoretical analysis, numerical simulation and experimental data are combined to analyze the influence of variable cross-section characteristic on the time history of crater radius. Moreover the relationships between time history of crater radius (as well as mass of BAD) and the thickness of RHA (from 30mm to 70 mm) and the impact velocity of EFP (1650 m/s to 1860 m/s) are also investigated. The results indicate that: 1) being compared to the variable cross-section characteristic is ignored, the theoretical time history of crater radius is in better agreement with the simulation results when the variable cross-section characteristic is considered;2) being compared to the other three conditions of plug, the theoretical mass of BAD is in the best agreement with the simulation results when the shape of plug is frustum of a cone and the angle between generatrix and bottom is 45- and the axial length of mushroom is considered.
文摘A new method called multi-frequency holography (MFH) for two-dimensional radar cross-section imaging of rotating objects is introduced, in which a constant coherent reference signal from transmitted signal is added into received signal over certain frequency-width. With the MFH only the intensity of received composite signals needs to be measured. Both imaging situations of far field and near field are considered in details. Special restrictions about the MFH are also discussed and simulated by numerical computation. Examples of numerical simulation show that the method is effective, applicable and perspective.
文摘In this study;the effect of the electron density over the Br atoms raising with increasing number of CH_2 group using the results of the K X-ray cross-sections and average fluorescence yields of bromine in quaternary-imidazole ring.In the experimental set-up,50 mCi ^(241) Am source and a collimated Ultra-LEGe detector were used.The electron density on the Br atoms raises according to the number of the CH_2 groups on the contrary of the inductive effect.The decreasing of the X-ray fluorescence parameters is interested with the increasing the electron density of Br atoms.
文摘Different types of nuclear parameters and corrosion behavior were deduced for carbon steel(AISI 1018),austenitic(304 SS),and duplex(2507 SS)stainless steel alloys.Three types of neutron energies as well as nine gamma ray energy lines(121.78-1407.92 keV)were used to evaluate the macroscopic neutron cross-sections(∑,cm^-1)and mass attenuation coefficients[σ,cm^2·g^-1)of gamma ray respectively.The corrosion behavior was investigated using different electrochemical techniques.The results showed that the stainless-steel alloys had a good attitude than that of carbon steel alloy for neutron and gamma ray parameters,especially the duplex stainless steel.The calculated values of mass attenuation coefficient using WinXcom computer program(Version 3.1),exhibited a very good agreement with the experimental values of that parameters.Moreover,the results indicated that duplex stainless-steel exhibited corrosion resistance higher than 304 SS and AISI 1018 steel alloys.
基金Project(IRT1292)supported by Fund for Changjiang Scholars and Innovative Research Team in University(PCSIRT)China+2 种基金Project(51475456)supported by the National Natural Science Foundation of ChinaProject supported by the Priority Academic Program Development(PAPD)of Jiangsu Higher Education InstitutionsChina
文摘For the static analysis of the sinking stage curved beam, a finite difference model was presented based on the proposed revised Vlasov equations. First, revised Vlasov equations for thin-walled curved beams with closed sections were deduced considering the shear strain on the mid-surface of the cross-section. Then, the finite difference formulation of revised Vlasov equations was implemented with the parabolic interpolation based on Taylor series. At last, the finite difference model was built by substituting geometry and boundary conditions of the sinking stage curved beam into the finite difference formulation. The validity of present work is confirmed by the published literature and ANSYS simulation results. It can be concluded that revised Vlasov equations are more accurate than the original one in the analysis of thin-walled beams with closed sections, and that present finite difference model is applicable in the evaluation of the sinking stage curved beam.
文摘The key technique of a kinetic energy rod(KER) warhead is to control the flight attitude of rods. The rods are usually designed to different shapes. A new conceptual KER named profiled rod which has large L/D ratio is described in this paper. The elastic dynamic equations of this profiled rod flying at high velocity after detonation are set up on the basis of Euler-Bernoulli beam, and the aeroelastic deformation of profiled rod is calculated by semi-analytical method for calculating the vibration characteristics of variable cross-section beam. In addition, the aeroelastic deformation of the undeformed profiled rod and the aeroelastic deformation of deformed profiled rod which is caused by the detonation of explosive are simulated by computational fluid dynamic and finite element method(CFD/FEM), respectively. A satisfactory agreement of these two methods is obtained by the comparison of two methods. The results show that the semi-analytical method for calculating the vibration characteristics of variable cross-section beam is applied to analyze the aeroelastic deformation of profiled rod flying at high velocity.