期刊文献+
共找到2,322篇文章
< 1 2 117 >
每页显示 20 50 100
The real-time dynamic liquid level calculation method of the sucker rod well based on multi-view features fusion
1
作者 Cheng-Zhe Yin Kai Zhang +4 位作者 Jia-Yuan Liu Xin-Yan Wang Min Li Li-Ming Zhang Wen-Sheng Zhou 《Petroleum Science》 SCIE EI CAS CSCD 2024年第5期3575-3586,共12页
In the production of the sucker rod well, the dynamic liquid level is important for the production efficiency and safety in the lifting process. It is influenced by multi-source data which need to be combined for the ... In the production of the sucker rod well, the dynamic liquid level is important for the production efficiency and safety in the lifting process. It is influenced by multi-source data which need to be combined for the dynamic liquid level real-time calculation. In this paper, the multi-source data are regarded as the different views including the load of the sucker rod and liquid in the wellbore, the image of the dynamometer card and production dynamics parameters. These views can be fused by the multi-branch neural network with special fusion layer. With this method, the features of different views can be extracted by considering the difference of the modality and physical meaning between them. Then, the extraction results which are selected by multinomial sampling can be the input of the fusion layer.During the fusion process, the availability under different views determines whether the views are fused in the fusion layer or not. In this way, not only the correlation between the views can be considered, but also the missing data can be processed automatically. The results have shown that the load and production features fusion(the method proposed in this paper) performs best with the lowest mean absolute error(MAE) 39.63 m, followed by the features concatenation with MAE 42.47 m. They both performed better than only a single view and the lower MAE of the features fusion indicates that its generalization ability is stronger. In contrast, the image feature as a single view contributes little to the accuracy improvement after fused with other views with the highest MAE. When there is data missing in some view, compared with the features concatenation, the multi-view features fusion will not result in the unavailability of a large number of samples. When the missing rate is 10%, 30%, 50% and 80%, the method proposed in this paper can reduce MAE by 5.8, 7, 9.3 and 20.3 m respectively. In general, the multi-view features fusion method proposed in this paper can improve the accuracy obviously and process the missing data effectively, which helps provide technical support for real-time monitoring of the dynamic liquid level in oil fields. 展开更多
关键词 Dynamic liquid level Multi view features fusion Sucker rod well Dynamometer cards
在线阅读 下载PDF
A Fusion Localization Method Based on Target Measurement Error Feature Complementarity and Its Application
2
作者 Xin Yang Hongming Liu +3 位作者 Xiaoke Wang Wen Yu Jingqiu Liu Sipei Zhang 《Journal of Beijing Institute of Technology》 EI CAS 2024年第1期75-88,共14页
In the multi-radar networking system,aiming at the problem of locating long-distance targets synergistically with difficulty and low accuracy,a dual-station joint positioning method based on the target measurement err... In the multi-radar networking system,aiming at the problem of locating long-distance targets synergistically with difficulty and low accuracy,a dual-station joint positioning method based on the target measurement error feature complementarity is proposed.For dual-station joint positioning,by constructing the target positioning error distribution model and using the complementarity of spatial measurement errors of the same long-distance target,the area with high probability of target existence can be obtained.Then,based on the target distance information,the midpoint of the intersection between the target positioning sphere and the positioning tangent plane can be solved to acquire the target's optimal positioning result.The simulation demonstrates that this method greatly improves the positioning accuracy of target in azimuth direction.Compared with the traditional the dynamic weighted fusion(DWF)algorithm and the filter-based dynamic weighted fusion(FBDWF)algorithm,it not only effectively eliminates the influence of systematic error in the azimuth direction,but also has low computational complexity.Furthermore,for the application scenarios of multi-radar collaborative positioning and multi-sensor data compression filtering in centralized information fusion,it is recommended that using radar with higher ranging accuracy and the lengths of baseline between radars are 20–100 km. 展开更多
关键词 dual-station positioning feature complementarity information fusion engineering applicability
在线阅读 下载PDF
New Algorithm for Image Target Recognition Based on Fractal Feature Fusion 被引量:2
3
作者 潘秀琴 侯朝桢 苏利敏 《Journal of Beijing Institute of Technology》 EI CAS 2002年第4期342-345,共4页
By combining fractal theory with D-S evidence theory, an algorithm based on the fusion of multi-fractal features is presented. Fractal features are extracted, and basic probability assignment function is designed. Com... By combining fractal theory with D-S evidence theory, an algorithm based on the fusion of multi-fractal features is presented. Fractal features are extracted, and basic probability assignment function is designed. Comparison and simulation are performed on the new algorithm, the old algorithm based on single feature and the algorithm based on neural network. Results of the comparison and simulation illustrate that the new algorithm is feasible and valid. 展开更多
关键词 FRACTAL feature fusion target recognition
在线阅读 下载PDF
A Novel Human Action Recognition Algorithm Based on Decision Level Multi-Feature Fusion 被引量:4
4
作者 SONG Wei LIU Ningning +1 位作者 YANG Guosheng YANG Pei 《China Communications》 SCIE CSCD 2015年第S2期93-102,共10页
In order to take advantage of the logical structure of video sequences and improve the recognition accuracy of the human action, a novel hybrid human action detection method based on three descriptors and decision lev... In order to take advantage of the logical structure of video sequences and improve the recognition accuracy of the human action, a novel hybrid human action detection method based on three descriptors and decision level fusion is proposed. Firstly, the minimal 3D space region of human action region is detected by combining frame difference method and Vi BE algorithm, and the three-dimensional histogram of oriented gradient(HOG3D) is extracted. At the same time, the characteristics of global descriptors based on frequency domain filtering(FDF) and the local descriptors based on spatial-temporal interest points(STIP) are extracted. Principal component analysis(PCA) is implemented to reduce the dimension of the gradient histogram and the global descriptor, and bag of words(BoW) model is applied to describe the local descriptors based on STIP. Finally, a linear support vector machine(SVM) is used to create a new decision level fusion classifier. Some experiments are done to verify the performance of the multi-features, and the results show that they have good representation ability and generalization ability. Otherwise, the proposed scheme obtains very competitive results on the well-known datasets in terms of mean average precision. 展开更多
关键词 HUMAN action RECOGNITION feature fusion HOG3D
在线阅读 下载PDF
An infrared target intrusion detection method based on feature fusion and enhancement 被引量:12
5
作者 Xiaodong Hu Xinqing Wang +3 位作者 Xin Yang Dong Wang Peng Zhang Yi Xiao 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2020年第3期737-746,共10页
Infrared target intrusion detection has significant applications in the fields of military defence and intelligent warning.In view of the characteristics of intrusion targets as well as inspection difficulties,an infr... Infrared target intrusion detection has significant applications in the fields of military defence and intelligent warning.In view of the characteristics of intrusion targets as well as inspection difficulties,an infrared target intrusion detection algorithm based on feature fusion and enhancement was proposed.This algorithm combines static target mode analysis and dynamic multi-frame correlation detection to extract infrared target features at different levels.Among them,LBP texture analysis can be used to effectively identify the posterior feature patterns which have been contained in the target library,while motion frame difference method can detect the moving regions of the image,improve the integrity of target regions such as camouflage,sheltering and deformation.In order to integrate the advantages of the two methods,the enhanced convolutional neural network was designed and the feature images obtained by the two methods were fused and enhanced.The enhancement module of the network strengthened and screened the targets,and realized the background suppression of infrared images.Based on the experiments,the effect of the proposed method and the comparison method on the background suppression and detection performance was evaluated,and the results showed that the SCRG and BSF values of the method in this paper had a better performance in multiple data sets,and it’s detection performance was far better than the comparison algorithm.The experiment results indicated that,compared with traditional infrared target detection methods,the proposed method could detect the infrared invasion target more accurately,and suppress the background noise more effectively. 展开更多
关键词 Target intrusion detection Convolutional neural network feature fusion Infrared target
在线阅读 下载PDF
Image Classification Based on the Fusion of Complementary Features 被引量:3
6
作者 Huilin Gao Wenjie Chen 《Journal of Beijing Institute of Technology》 EI CAS 2017年第2期197-205,共9页
Image classification based on bag-of-words(BOW)has a broad application prospect in pattern recognition field but the shortcomings such as single feature and low classification accuracy are apparent.To deal with this... Image classification based on bag-of-words(BOW)has a broad application prospect in pattern recognition field but the shortcomings such as single feature and low classification accuracy are apparent.To deal with this problem,this paper proposes to combine two ingredients:(i)Three features with functions of mutual complementation are adopted to describe the images,including pyramid histogram of words(PHOW),pyramid histogram of color(PHOC)and pyramid histogram of orientated gradients(PHOG).(ii)An adaptive feature-weight adjusted image categorization algorithm based on the SVM and the decision level fusion of multiple features are employed.Experiments are carried out on the Caltech101 database,which confirms the validity of the proposed approach.The experimental results show that the classification accuracy rate of the proposed method is improved by 7%-14%higher than that of the traditional BOW methods.With full utilization of global,local and spatial information,the algorithm is much more complete and flexible to describe the feature information of the image through the multi-feature fusion and the pyramid structure composed by image spatial multi-resolution decomposition.Significant improvements to the classification accuracy are achieved as the result. 展开更多
关键词 image classification complementary features bag-of-words (BOW) feature fusion
在线阅读 下载PDF
Feature-Based Fusion of Dual Band Infrared Image Using Multiple Pulse Coupled Neural Network 被引量:1
7
作者 Yuqing He Shuaiying Wei +3 位作者 Tao Yang Weiqi Jin Mingqi Liu Xiangyang Zhai 《Journal of Beijing Institute of Technology》 EI CAS 2019年第1期129-136,共8页
To improve the quality of the infrared image and enhance the information of the object,a dual band infrared image fusion method based on feature extraction and a novel multiple pulse coupled neural network(multi-PCNN)... To improve the quality of the infrared image and enhance the information of the object,a dual band infrared image fusion method based on feature extraction and a novel multiple pulse coupled neural network(multi-PCNN)is proposed.In this multi-PCNN fusion scheme,the auxiliary PCNN which captures the characteristics of feature image extracting from the infrared image is used to modulate the main PCNN,whose input could be original infrared image.Meanwhile,to make the PCNN fusion effect consistent with the human vision system,Laplacian energy is adopted to obtain the value of adaptive linking strength in PCNN.After that,the original dual band infrared images are reconstructed by using a weight fusion rule with the fire mapping images generated by the main PCNNs to obtain the fused image.Compared to wavelet transforms,Laplacian pyramids and traditional multi-PCNNs,fusion images based on our method have more information,rich details and clear edges. 展开更多
关键词 infrared IMAGE IMAGE fusion dual BAND pulse coupled NEURAL network(PCNN) feature extraction
在线阅读 下载PDF
Behavior Recognition of the Elderly in Indoor Environment Based on Feature Fusion of Wi-Fi Perception and Videos 被引量:2
8
作者 Yuebin Song Chunling Fan 《Journal of Beijing Institute of Technology》 EI CAS 2023年第2期142-155,共14页
With the intensifying aging of the population,the phenomenon of the elderly living alone is also increasing.Therefore,using modern internet of things technology to monitor the daily behavior of the elderly in indoors ... With the intensifying aging of the population,the phenomenon of the elderly living alone is also increasing.Therefore,using modern internet of things technology to monitor the daily behavior of the elderly in indoors is a meaningful study.Video-based action recognition tasks are easily affected by object occlusion and weak ambient light,resulting in poor recognition performance.Therefore,this paper proposes an indoor human behavior recognition method based on wireless fidelity(Wi-Fi)perception and video feature fusion by utilizing the ability of Wi-Fi signals to carry environmental information during the propagation process.This paper uses the public WiFi-based activity recognition dataset(WIAR)containing Wi-Fi channel state information and essential action videos,and then extracts video feature vectors and Wi-Fi signal feature vectors in the datasets through the two-stream convolutional neural network and standard statistical algorithms,respectively.Then the two sets of feature vectors are fused,and finally,the action classification and recognition are performed by the support vector machine(SVM).The experiments in this paper contrast experiments between the two-stream network model and the methods in this paper under three different environments.And the accuracy of action recognition after adding Wi-Fi signal feature fusion is improved by 10%on average. 展开更多
关键词 human behavior recognition two-stream convolution neural network channel status information feature fusion support vector machine(SVM)
在线阅读 下载PDF
Video Concept Detection Based on Multiple Features and Classifiers Fusion 被引量:1
9
作者 Dong Yuan Zhang Jiwei +2 位作者 Zhao Nan Chang Xiaofu Liu Wei 《China Communications》 SCIE CSCD 2012年第8期105-121,共17页
The rapid growth of multimedia content necessitates powerful technologies to filter, classify, index and retrieve video documents more efficiently. However, the essential bottleneck of image and video analysis is the ... The rapid growth of multimedia content necessitates powerful technologies to filter, classify, index and retrieve video documents more efficiently. However, the essential bottleneck of image and video analysis is the problem of semantic gap that low level features extracted by computers always fail to coincide with high-level concepts interpreted by humans. In this paper, we present a generic scheme for the detection video semantic concepts based on multiple visual features machine learning. Various global and local low-level visual features are systelrtically investigated, and kernelbased learning method equips the concept detection system to explore the potential of these features. Then we combine the different features and sub-systen on both classifier-level and kernel-level fusion that contribute to a more robust system Our proposed system is tested on the TRECVID dataset. The resulted Mean Average Precision (MAP) score is rmch better than the benchmark perforrmnce, which proves that our concepts detection engine develops a generic model and perforrrs well on both object and scene type concepts. 展开更多
关键词 concept detection visual feature extraction kemel-based learning classifier fusion
在线阅读 下载PDF
Product Image Classification Based on Fusion Features
10
作者 杨晓慧 刘静静 杨利军 《Chinese Quarterly Journal of Mathematics》 2015年第3期429-441,共13页
Two key challenges raised by a product images classification system are classification precision and classification time. In some categories, classification precision of the latest techniques, in the product images cl... Two key challenges raised by a product images classification system are classification precision and classification time. In some categories, classification precision of the latest techniques, in the product images classification system, is still low. In this paper, we propose a local texture descriptor termed fan refined local binary pattern, which captures more detailed information by integrating the spatial distribution into the local binary pattern feature. We compare our approach with different methods on a subset of product images on Amazon/e Bay and parts of PI100 and experimental results have demonstrated that our proposed approach is superior to the current existing methods. The highest classification precision is increased by 21% and the average classification time is reduced by 2/3. 展开更多
关键词 product image CLASSIFICATION FAN refined local binary pattern(FRLBP) PYRAMID HISTOGRAM of orientated gradients(PHOG) fusion featureS
在线阅读 下载PDF
Jamming Recognition Based on Feature Fusion and Convolutional Neural Network
11
作者 Sitian Liu Chunli Zhu 《Journal of Beijing Institute of Technology》 EI CAS 2022年第2期169-177,共9页
The complicated electromagnetic environment of the BeiDou satellites introduces vari-ous types of external jamming to communication links,in which recognition of jamming signals with uncertainties is essential.In this... The complicated electromagnetic environment of the BeiDou satellites introduces vari-ous types of external jamming to communication links,in which recognition of jamming signals with uncertainties is essential.In this work,the jamming recognition framework proposed consists of fea-ture fusion and a convolutional neural network(CNN).Firstly,the recognition inputs are obtained by prepossessing procedure,in which the 1-D power spectrum and 2-D time-frequency image are ac-cessed through the Welch algorithm and short-time Fourier transform(STFT),respectively.Then,the 1D-CNN and residual neural network(ResNet)are introduced to extract the deep features of the two prepossessing inputs,respectively.Finally,the two deep features are concatenated for the following three fully connected layers and output the jamming signal classification results through the softmax layer.Results show the proposed method could reduce the impacts of potential feature loss,therefore improving the generalization ability on dealing with uncertainties. 展开更多
关键词 time-frequency image feature power spectrum feature convolutional neural network feature fusion jamming recognition
在线阅读 下载PDF
Robust Visual Tracking with Hierarchical Deep Features Weighted Fusion
12
作者 Dianwei Wang Chunxiang Xu +3 位作者 Daxiang Li Ying Liu Zhijie Xu Jing Wang 《Journal of Beijing Institute of Technology》 EI CAS 2019年第4期770-776,共7页
To solve the problem of low robustness of trackers under significant appearance changes in complex background,a novel moving target tracking method based on hierarchical deep features weighted fusion and correlation f... To solve the problem of low robustness of trackers under significant appearance changes in complex background,a novel moving target tracking method based on hierarchical deep features weighted fusion and correlation filter is proposed.Firstly,multi-layer features are extracted by a deep model pre-trained on massive object recognition datasets.The linearly separable features of Relu3-1,Relu4-1 and Relu5-4 layers from VGG-Net-19 are especially suitable for target tracking.Then,correlation filters over hierarchical convolutional features are learned to generate their correlation response maps.Finally,a novel approach of weight adjustment is presented to fuse response maps.The maximum value of the final response map is just the location of the target.Extensive experiments on the object tracking benchmark datasets demonstrate the high robustness and recognition precision compared with several state-of-the-art trackers under the different conditions. 展开更多
关键词 visual tracking convolution neural network correlation filter feature fusion
在线阅读 下载PDF
Image Classification with Superpixels and Feature Fusion Method
13
作者 Feng Yang Zheng Ma Mei Xie 《Journal of Electronic Science and Technology》 CAS CSCD 2021年第1期70-78,共9页
This paper presents an effective image classification algorithm based on superpixels and feature fusion.Differing from classical image classification algorithms that extract feature descriptors directly from the origi... This paper presents an effective image classification algorithm based on superpixels and feature fusion.Differing from classical image classification algorithms that extract feature descriptors directly from the original image,the proposed method first segments the input image into superpixels and,then,several different types of features are calculated according to these superpixels.To increase classification accuracy,the dimensions of these features are reduced using the principal component analysis(PCA)algorithm followed by a weighted serial feature fusion strategy.After constructing a coding dictionary using the nonnegative matrix factorization(NMF)algorithm,the input image is recognized by a support vector machine(SVM)model.The effectiveness of the proposed method was tested on the public Scene-15,Caltech-101,and Caltech-256 datasets,and the experimental results demonstrate that the proposed method can effectively improve image classification accuracy. 展开更多
关键词 Dimension reduction feature fusion image classification.
在线阅读 下载PDF
Feature Layer Fusion of Linear Features and Empirical Mode Decomposition of Human EMG Signal
14
作者 Jun-Yao Wang Yue-Hong Dai Xia-Xi Si 《Journal of Electronic Science and Technology》 CAS CSCD 2022年第3期257-269,共13页
To explore the influence of the fusion of different features on recognition,this paper took the electromyography(EMG)signals of rectus femoris under different motions(walk,step,ramp,squat,and sitting)as samples,linear... To explore the influence of the fusion of different features on recognition,this paper took the electromyography(EMG)signals of rectus femoris under different motions(walk,step,ramp,squat,and sitting)as samples,linear features(time-domain features(variance(VAR)and root mean square(RMS)),frequency-domain features(mean frequency(MF)and mean power frequency(MPF)),and nonlinear features(empirical mode decomposition(EMD))of the samples were extracted.Two feature fusion algorithms,the series splicing method and complex vector method,were designed,which were verified by a double hidden layer(BP)error back propagation neural network.Results show that with the increase of the types and complexity of feature fusions,the recognition rate of the EMG signal to actions is gradually improved.When the EMG signal is used in the series splicing method,the recognition rate of time-domain+frequency-domain+empirical mode decomposition(TD+FD+EMD)splicing is the highest,and the average recognition rate is 92.32%.And this rate is raised to 96.1%by using the complex vector method,and the variance of the BP system is also reduced. 展开更多
关键词 Complex vector method electromyography(EMG)signal empirical mode decomposition feature layer fusion series splicing method
在线阅读 下载PDF
Bidirectional parallel multi-branch convolution feature pyramid network for target detection in aerial images of swarm UAVs 被引量:4
15
作者 Lei Fu Wen-bin Gu +3 位作者 Wei Li Liang Chen Yong-bao Ai Hua-lei Wang 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2021年第4期1531-1541,共11页
In this paper,based on a bidirectional parallel multi-branch feature pyramid network(BPMFPN),a novel one-stage object detector called BPMFPN Det is proposed for real-time detection of ground multi-scale targets by swa... In this paper,based on a bidirectional parallel multi-branch feature pyramid network(BPMFPN),a novel one-stage object detector called BPMFPN Det is proposed for real-time detection of ground multi-scale targets by swarm unmanned aerial vehicles(UAVs).First,the bidirectional parallel multi-branch convolution modules are used to construct the feature pyramid to enhance the feature expression abilities of different scale feature layers.Next,the feature pyramid is integrated into the single-stage object detection framework to ensure real-time performance.In order to validate the effectiveness of the proposed algorithm,experiments are conducted on four datasets.For the PASCAL VOC dataset,the proposed algorithm achieves the mean average precision(mAP)of 85.4 on the VOC 2007 test set.With regard to the detection in optical remote sensing(DIOR)dataset,the proposed algorithm achieves 73.9 mAP.For vehicle detection in aerial imagery(VEDAI)dataset,the detection accuracy of small land vehicle(slv)targets reaches 97.4 mAP.For unmanned aerial vehicle detection and tracking(UAVDT)dataset,the proposed BPMFPN Det achieves the mAP of 48.75.Compared with the previous state-of-the-art methods,the results obtained by the proposed algorithm are more competitive.The experimental results demonstrate that the proposed algorithm can effectively solve the problem of real-time detection of ground multi-scale targets in aerial images of swarm UAVs. 展开更多
关键词 Aerial images Object detection feature pyramid networks Multi-scale feature fusion Swarm UAVs
在线阅读 下载PDF
Assessing Landsat-8 and Sentinel-2 spectral-temporal features for mapping tree species of northern plantation forests in Heilongjiang Province,China 被引量:3
16
作者 Mengyu Wang Yi Zheng +7 位作者 Chengquan Huang Ran Meng Yong Pang Wen Jia Jie Zhou Zehua Huang Linchuan Fang Feng Zhao 《Forest Ecosystems》 SCIE CSCD 2022年第3期344-356,共13页
Background:Accurate mapping of tree species is highly desired in the management and research of plantation forests,whose ecosystem services are currently under threats.Time-series multispectral satellite images,e.g.,f... Background:Accurate mapping of tree species is highly desired in the management and research of plantation forests,whose ecosystem services are currently under threats.Time-series multispectral satellite images,e.g.,from Landsat-8(L8)and Sentinel-2(S2),have been proven useful in mapping general forest types,yet we do not know quantitatively how their spectral features(e.g.,red-edge)and temporal frequency of data acquisitions(e.g.,16-day vs.5-day)contribute to plantation forest mapping to the species level.Moreover,it is unclear to what extent the fusion of L8 and S2 will result in improvements in tree species mapping of northern plantation forests in China.Methods:We designed three sets of classification experiments(i.e.,single-date,multi-date,and spectral-temporal)to evaluate the performances of L8 and S2 data for mapping keystone timber tree species in northern China.We first used seven pairs of L8 and S2 images to evaluate the performances of L8 and S2 key spectral features for separating these tree species across key growing stages.Then we extracted the spectral-temporal features from all available images of different temporal frequency of data acquisition(i.e.,L8 time series,S2 time series,and fusion of L8 and S2)to assess the contribution of image temporal frequency on the accuracy of tree species mapping in the study area.Results:1)S2 outperformed L8 images in all classification experiments,with or without the red edge bands(0.4%–3.4%and 0.2%–4.4%higher for overall accuracy and macro-F1,respectively);2)NDTI(the ratio of SWIR1 minus SWIR2 to SWIR1 plus SWIR2)and Tasseled Cap coefficients were most important features in all the classifications,and for time-series experiments,the spectral-temporal features of red band-related vegetation indices were most useful;3)increasing the temporal frequency of data acquisition can improve overall accuracy of tree species mapping for up to 3.2%(from 90.1%using single-date imagery to 93.3%using S2 time-series),yet similar overall accuracies were achieved using S2 time-series(93.3%)and the fusion of S2 and L8(93.2%).Conclusions:This study quantifies the contributions of L8 and S2 spectral and temporal features in mapping keystone tree species of northern plantation forests in China and suggests that for mapping tree species in China's northern plantation forests,the effects of increasing the temporal frequency of data acquisition could saturate quickly after using only two images from key phenological stages. 展开更多
关键词 Tree species mapping Plantation forests Red-edge features Temporal frequency of data acquisition fusion of Landsat-8 and Sentinel-2
在线阅读 下载PDF
High-precision urban rail map construction based on multi-sensor fusion
17
作者 Zhihong Huang Ruipeng Gao +3 位作者 Zejing Xu Yiqing Liu Zongru Ma Dan Tao 《High-Speed Railway》 2024年第4期265-273,共9页
The construction of high-precision urban rail maps is crucial for the safe and efficient operation of railway transportation systems.However,the repetitive features and sparse textures in urban rail environments pose ... The construction of high-precision urban rail maps is crucial for the safe and efficient operation of railway transportation systems.However,the repetitive features and sparse textures in urban rail environments pose challenges for map construction with high-precision.Motivated by this,this paper proposes a high-precision urban rail map construction algorithm based on multi-sensor fusion.The algorithm integrates laser radar and Inertial Measurement Unit(IMU)data to construct the geometric structure map of the urban rail.It utilizes image point-line features and color information to improve map accuracy by minimizing photometric errors and incorporating color information,thus generating high-precision maps.Experimental results on a real urban rail dataset demonstrate that the proposed algorithm achieves root mean square errors of 0.345 and 1.033m for ground and tunnel scenes,respectively,representing a 19.31%and 56.80%improvement compared to state-ofthe-art methods. 展开更多
关键词 Urban rail Multi-sensor fusion Point-line features Photometric error
在线阅读 下载PDF
基于动态自适应通道注意力特征融合的小目标检测
18
作者 吴迪 赵品懿 +2 位作者 甘升隆 沈学军 万琴 《电子科技大学学报》 北大核心 2025年第2期221-232,共12页
针对小目标检测中卷积操作导致检测特征缺失和不同尺度语义隔阂的问题,提出一种基于动态自适应通道注意力特征融合的小目标检测方法。1)提出一种多尺度三角动态颈(Tri-Neck)网络结构,用于融合多尺度特征语义隔阂及弥补小目标特征缺失的... 针对小目标检测中卷积操作导致检测特征缺失和不同尺度语义隔阂的问题,提出一种基于动态自适应通道注意力特征融合的小目标检测方法。1)提出一种多尺度三角动态颈(Tri-Neck)网络结构,用于融合多尺度特征语义隔阂及弥补小目标特征缺失的问题。2)提出一种分组批量动态自适应通道注意力模块,增强弱语义小目标特征同时抑制无用信息,且在动态自适应通道注意力模块中设计新的激活函数和交并比损失函数,提升通道注意力表征能力。3)采用ResNet50作为骨干网络依次连接特征金字塔网络和Tri-Neck网络。实验结果表明,该方法在Pascal Voc 2007、Pascal Voc 2012上比YOLOv8算法mAP分别提升5.3%和6.2%,在MS COCO 2017数据集上AP和AP_S分别提升1.6%和2%,在SODA-D数据集上比YOLOv8算法AP提升0.9%。 展开更多
关键词 小目标检测 多尺度融合特征 特征金字塔 动态通道注意力 交并比损失函数
在线阅读 下载PDF
基于细节增强和多颜色空间学习的联合监督水下图像增强算法
19
作者 胡锐 程家亮 胡伏原 《现代电子技术》 北大核心 2025年第1期23-28,共6页
由于水下特殊的成像环境,水下图像往往具有严重的色偏雾化等现象。因此文中根据水下光学成像模型设计了一种新的增强算法,即基于细节增强和多颜色空间学习的无监督水下图像增强算法(UUIE-DEMCSL)。该算法设计了一种基于多颜色空间的增... 由于水下特殊的成像环境,水下图像往往具有严重的色偏雾化等现象。因此文中根据水下光学成像模型设计了一种新的增强算法,即基于细节增强和多颜色空间学习的无监督水下图像增强算法(UUIE-DEMCSL)。该算法设计了一种基于多颜色空间的增强网络,将输入转换为多个颜色空间(HSV、RGB、LAB)进行特征提取,并将提取到的特征融合,使得网络能学习到更多的图像特征信息,从而对输入图像进行更为精确的增强。最后,UUIE-DEMCSL根据水下光学成像模型和联合监督学习框架进行设计,使其更适合水下图像增强任务的应用场景。在不同数据集上大量的实验结果表明,文中提出的UUIE-DEMCSL算法能生成视觉质量良好的水下增强图像,且各项指标具有显著的优势。 展开更多
关键词 水下图像增强 多颜色空间学习 无监督学习 细节增强 特征提取 特征融合
在线阅读 下载PDF
基于自适应特征增强和融合的舰载机着舰拉制状态识别
20
作者 王可 刘奕阳 +3 位作者 杨杰 鲁爱国 李哲 徐明亮 《上海交通大学学报》 北大核心 2025年第2期274-282,共9页
拉制状态识别能辅助着舰信号官及时准确地形成后续指挥决策,是舰载机着舰引导的重要环节.提出一种基于自适应特征增强和融合的拉制状态识别方法,包含基于注意力机制的特征增强模块,通过分割特征图、串联空间域和通道域增强视觉表征能力... 拉制状态识别能辅助着舰信号官及时准确地形成后续指挥决策,是舰载机着舰引导的重要环节.提出一种基于自适应特征增强和融合的拉制状态识别方法,包含基于注意力机制的特征增强模块,通过分割特征图、串联空间域和通道域增强视觉表征能力;利用多尺度特征融合模块,将高分辨率浅层特征与语义信息丰富的深层特征进行融合,充分利用上下文语义信息.基于所提方法,设计基于可穿戴增强现实设备的着舰拉制状态识别原型系统;构建着舰作业虚实融合数据集以评估方法性能.结果表明,所提算法综合性能优于基线算法,能满足拉制状态识别的应用需求. 展开更多
关键词 舰载机 阻拦着舰 特征融合 注意力机制 状态识别
在线阅读 下载PDF
上一页 1 2 117 下一页 到第
使用帮助 返回顶部