Aiming at the demand for optimization of hydrodynamic coefficients in submarine's motion equations,an adaptive weight immune genetic algorithm was proposed to optimize hydrodynamic coefficients in motion equations...Aiming at the demand for optimization of hydrodynamic coefficients in submarine's motion equations,an adaptive weight immune genetic algorithm was proposed to optimize hydrodynamic coefficients in motion equations.Some hydrodynamic coefficients of high sensitivity to control and maneuver were chosen as the optimization objects in the algorithm.By using adaptive weight method to determine the weight and target function,the multi-objective optimization could be translated into single-objective optimization.For a certain kind of submarine,three typical maneuvers were chosen to be the objects of study:overshoot maneuver in horizontal plane,overshoot maneuver in vertical plane and turning circle maneuver in horizontal plane.From the results of computer simulations using primal hydrodynamic coefficient and optimized hydrodynamic coefficient,the efficiency of proposed method is proved.展开更多
The electromagnetic detection satellite (EDS) is a type of earth observation satellites (EOSs). The Information collected by EDSs plays an important role in some fields, such as industry, science and military. The...The electromagnetic detection satellite (EDS) is a type of earth observation satellites (EOSs). The Information collected by EDSs plays an important role in some fields, such as industry, science and military. The scheduling of EDSs is a complex combinatorial optimization problem. Current research mainly focuses on the scheduling of imaging satellites and SAR satellites, but little work has been done on the scheduling of EDSs for its specific characteristics. A multi-satellite scheduling model is established, in which the specific constrains of EDSs are considered, then a scheduling algorithm based on the genetic algorithm (GA) is proposed. To deal with the specific constrains of EDSs, a penalty function method is introduced. However, it is hard to determine the appropriate penalty coefficient in the penalty function. Therefore, an adaptive adjustment mechanism of the penalty coefficient is designed to solve the problem, as well as improve the scheduling results. Experimental results are used to demonstrate the correctness and practicability of the proposed scheduling algorithm.展开更多
Temporal-spatial cross-correlation analysis of non-stationary wind speed time series plays a crucial role in wind field reconstruction as well as in wind pattern recognition.Firstly,the near-surface wind speed time se...Temporal-spatial cross-correlation analysis of non-stationary wind speed time series plays a crucial role in wind field reconstruction as well as in wind pattern recognition.Firstly,the near-surface wind speed time series recorded at different locations are studied using the detrended fluctuation analysis(DFA),and the corresponding scaling exponents are larger than 1.This indicates that all these wind speed time series have non-stationary characteristics.Secondly,concerning this special feature( i.e.,non-stationarity)of wind signals,a cross-correlation analysis method,namely detrended cross-correlation analysis(DCCA) coefficient,is employed to evaluate the temporal-spatial cross-correlations between non-stationary time series of different anemometer pairs.Finally,experiments on ten wind speed data synchronously collected by the ten anemometers with equidistant arrangement illustrate that the method of DCCA cross-correlation coefficient can accurately analyze full-scale temporal-spatial cross-correlation between non-stationary time series and also can easily identify the seasonal component,while three traditional cross-correlation techniques(i.e.,Pearson coefficient,cross-correlation function,and DCCA method) cannot give us these information directly.展开更多
A metal-sensitive diaphragm fiber optic pressure sensor with temperature compensation is developed for pressure monitoring in high-temperature environments,such as engine fuel systems,oil and gas wells,and aviation hy...A metal-sensitive diaphragm fiber optic pressure sensor with temperature compensation is developed for pressure monitoring in high-temperature environments,such as engine fuel systems,oil and gas wells,and aviation hydraulic systems.The sensor combines a metal-sensitive diaphragm and a sapphire wafer to form a temperature-pressure dual Fabry-Perot(FP)interference cavity.A cross-correlation signal demodulation algorithm and a temperature decoupling method are utilized to reduce the influence of temperature crosstalk on pressure measurement.Experimental results show that the maximum nonlinear error of the sensor pressure measurement is 0.75%full scale(FS)and 0.99%FS at room temperature and 300°C,respectively,in a pressure range of 0−10 MPa and 0−1.5 MPa.The sensor’s pressure measurement accuracy is 1.7%FS when using the temperature decoupling method.The sensor exhibits good static pressure characteristics,stability,and reliability,providing an effective solution for high-temperature pressure monitoring applications.展开更多
文摘Aiming at the demand for optimization of hydrodynamic coefficients in submarine's motion equations,an adaptive weight immune genetic algorithm was proposed to optimize hydrodynamic coefficients in motion equations.Some hydrodynamic coefficients of high sensitivity to control and maneuver were chosen as the optimization objects in the algorithm.By using adaptive weight method to determine the weight and target function,the multi-objective optimization could be translated into single-objective optimization.For a certain kind of submarine,three typical maneuvers were chosen to be the objects of study:overshoot maneuver in horizontal plane,overshoot maneuver in vertical plane and turning circle maneuver in horizontal plane.From the results of computer simulations using primal hydrodynamic coefficient and optimized hydrodynamic coefficient,the efficiency of proposed method is proved.
基金supported by the National Natural Science Foundation of China(6110118461174159)
文摘The electromagnetic detection satellite (EDS) is a type of earth observation satellites (EOSs). The Information collected by EDSs plays an important role in some fields, such as industry, science and military. The scheduling of EDSs is a complex combinatorial optimization problem. Current research mainly focuses on the scheduling of imaging satellites and SAR satellites, but little work has been done on the scheduling of EDSs for its specific characteristics. A multi-satellite scheduling model is established, in which the specific constrains of EDSs are considered, then a scheduling algorithm based on the genetic algorithm (GA) is proposed. To deal with the specific constrains of EDSs, a penalty function method is introduced. However, it is hard to determine the appropriate penalty coefficient in the penalty function. Therefore, an adaptive adjustment mechanism of the penalty coefficient is designed to solve the problem, as well as improve the scheduling results. Experimental results are used to demonstrate the correctness and practicability of the proposed scheduling algorithm.
基金Projects(61271321,61573253,61401303)supported by the National Natural Science Foundation of ChinaProject(14ZCZDSF00025)supported by Tianjin Key Technology Research and Development Program,China+1 种基金Project(13JCYBJC17500)supported by Tianjin Natural Science Foundation,ChinaProject(20120032110068)supported by Doctoral Fund of Ministry of Education of China
文摘Temporal-spatial cross-correlation analysis of non-stationary wind speed time series plays a crucial role in wind field reconstruction as well as in wind pattern recognition.Firstly,the near-surface wind speed time series recorded at different locations are studied using the detrended fluctuation analysis(DFA),and the corresponding scaling exponents are larger than 1.This indicates that all these wind speed time series have non-stationary characteristics.Secondly,concerning this special feature( i.e.,non-stationarity)of wind signals,a cross-correlation analysis method,namely detrended cross-correlation analysis(DCCA) coefficient,is employed to evaluate the temporal-spatial cross-correlations between non-stationary time series of different anemometer pairs.Finally,experiments on ten wind speed data synchronously collected by the ten anemometers with equidistant arrangement illustrate that the method of DCCA cross-correlation coefficient can accurately analyze full-scale temporal-spatial cross-correlation between non-stationary time series and also can easily identify the seasonal component,while three traditional cross-correlation techniques(i.e.,Pearson coefficient,cross-correlation function,and DCCA method) cannot give us these information directly.
文摘A metal-sensitive diaphragm fiber optic pressure sensor with temperature compensation is developed for pressure monitoring in high-temperature environments,such as engine fuel systems,oil and gas wells,and aviation hydraulic systems.The sensor combines a metal-sensitive diaphragm and a sapphire wafer to form a temperature-pressure dual Fabry-Perot(FP)interference cavity.A cross-correlation signal demodulation algorithm and a temperature decoupling method are utilized to reduce the influence of temperature crosstalk on pressure measurement.Experimental results show that the maximum nonlinear error of the sensor pressure measurement is 0.75%full scale(FS)and 0.99%FS at room temperature and 300°C,respectively,in a pressure range of 0−10 MPa and 0−1.5 MPa.The sensor’s pressure measurement accuracy is 1.7%FS when using the temperature decoupling method.The sensor exhibits good static pressure characteristics,stability,and reliability,providing an effective solution for high-temperature pressure monitoring applications.