期刊文献+
共找到16,738篇文章
< 1 2 250 >
每页显示 20 50 100
Molecular,cytological and morphological studies on Jassid resistance in cotton(Gossypium hirsutum L.)based on hairiness trait
1
作者 SUBHASHINI Selvaraj KEERTHIVARMAN Krishnan +4 位作者 RAJESWARI Sivakami PREMALATHA N KALAIMAGAL T MUTHUSWAMI M JEYAKUMAR P 《Journal of Cotton Research》 2025年第2期205-212,共8页
Background Unravelling the relationship between trichome density and resistance to jassids in upland cotton,nine parental lines,viz.MCU 5,CO 14,CO 17,TCH 1828,KC 2,KC 3,GISV 323,GTHV 15–34,and RHC 1409 were obtained ... Background Unravelling the relationship between trichome density and resistance to jassids in upland cotton,nine parental lines,viz.MCU 5,CO 14,CO 17,TCH 1828,KC 2,KC 3,GISV 323,GTHV 15–34,and RHC 1409 were obtained from the Tamilnadu Agricultural University.These genotypes were subjected to molecular analysis using 27 primers,merely the JESPR 154 primer amplifying a 150-bp fragment in genotypes exhibiting the pubescence.Result This finding validated the association between pubescence and jassid resistance.Further analysis revealed that resistant genotypes(KC 3,GTHV 15–34,GISV 323,and RHC 1409)exhibited significantly higher trichome densities and length compared with susceptible genotypes.These results stalwartly support the hypothesis that trichomes play a pivotal role in conferring resistance to jassids in upland cotton.Conclusion By breeding cotton varieties with increased trichome density and length,it is possible to reduce jassid infestations,thereby decreasing the reliance on chemical pesticides and promoting a more sustainable agricultural environment. 展开更多
关键词 cotton gossypium hirsutum L. TRICHOMES Jassids MOLECULAR
在线阅读 下载PDF
Phylogenomic analysis of bromodomain genes in cotton(Gossypium spp.) and their potential roles in abiotic stress tolerance
2
作者 TAYYAB Muhammad TAJ Muhammad Hassan +8 位作者 AHMAD Ali Ijaz RANA Faiza Rehman SHAHZAIB Muhammad ATIF Rana Muhammad AZHAR Muhammad Tehseen KHAN Sultan Habibullah KAKAKHEL Ishaq Ahmad Mian HE Shoupu RANA Iqrar Ahmad 《Journal of Cotton Research》 2025年第3期333-351,共19页
Background The bromodomain(BRD) proteins play a pivotal role in regulating gene expression by recognizing acetylated lysine residues and acting as chromatin-associated post-translational modification-inducing proteins... Background The bromodomain(BRD) proteins play a pivotal role in regulating gene expression by recognizing acetylated lysine residues and acting as chromatin-associated post-translational modification-inducing proteins. Although BRD proteins have been extensively studied in mammals, they have also been characterized in plants like Arabidopsis thaliana and Oryza sativa, where they regulate stress-responsive genes related to drought, salinity, and cold. However, their roles in cotton species remain unexplored.Results In this genome-wide comparative analysis, 145 BRD genes were identified in the tetraploid species(Gossypium hirsutum and G. barbadense), compared with 82 BRD genes in their diploid progenitors(G. arboreum and G. raimondii), indicating that polyploidization significantly influenced BRD gene evolution. Gene duplication analysis revealed 78.85% of duplications were segmental and 21.15% were tandem among 104 in-paralogous gene pairs, contributing to BRD gene expansion. Gene structure, motif, and domain analyses demonstrated that most genes were intron-less and conserved throughout evolution. Syntenic analysis revealed a greater number of orthologous gene pairs in the Dt sub-genome than in the At sub-genome. The abundance of regulatory, hormonal, and defense-related cis-regulatory elements in the promoter region suggests that BRD genes play a role in both biotic and abiotic stress responses. Protein-protein interaction analysis indicated that global transcription factor group E(GTE) transcription factors regulate BRD genes. Expression analysis revealed that BRD genes are predominantly involved in ovule development, with some genes displaying specific expression patterns under heat, cold, and salt stress. Furthermore, qRT-PCR analysis demonstrated significant differential expression of BRD genes between the tolerant and sensitive genotype, underscoring their potential role in mediating drought and salinity stress responses.Conclusions This study provides valuable insights into the evolution of BRD genes across species and their roles in abiotic stress tolerance, highlighting their potential in breeding programs to develop drought and salinity tolerant cotton varieties. 展开更多
关键词 cotton PHYLOGENETICS EPIGENETICS BROMODOMAIN
在线阅读 下载PDF
Machine learning models for optimization, validation, and prediction of light emitting diodes with kinetin based basal medium for in vitro regeneration of upland cotton (Gossypium hirsutum L.)
3
作者 ÖZKAT Gözde Yalçın AASIM Muhammad +2 位作者 BAKHSH Allah ALI Seyid Amjad ÖZCAN Sebahattin 《Journal of Cotton Research》 2025年第2期228-241,共14页
Background Plant tissue culture has emerged as a tool for improving cotton propagation and genetics,but recalcitrance nature of cotton makes it difficult to develop in vitro regeneration.Cotton’s recalcitrance is inf... Background Plant tissue culture has emerged as a tool for improving cotton propagation and genetics,but recalcitrance nature of cotton makes it difficult to develop in vitro regeneration.Cotton’s recalcitrance is influenced by genotype,explant type,and environmental conditions.To overcome these issues,this study uses different machine learning-based predictive models by employing multiple input factors.Cotyledonary node explants of two commercial cotton cultivars(STN-468 and GSN-12)were isolated from 7–8 days old seedlings,preconditioned with 5,10,and 20 mg·L^(-1) kinetin(KIN)for 10 days.Thereafter,explants were postconditioned on full Murashige and Skoog(MS),1/2MS,1/4MS,and full MS+0.05 mg·L^(-1) KIN,cultured in growth room enlightened with red and blue light-emitting diodes(LED)combination.Statistical analysis(analysis of variance,regression analysis)was employed to assess the impact of different treatments on shoot regeneration,with artificial intelligence(AI)models used for confirming the findings.Results GSN-12 exhibited superior shoot regeneration potential compared with STN-468,with an average of 4.99 shoots per explant versus 3.97.Optimal results were achieved with 5 mg·L^(-1) KIN preconditioning,1/4MS postconditioning,and 80%red LED,with maximum of 7.75 shoot count for GSN-12 under these conditions;while STN-468 reached 6.00 shoots under the conditions of 10 mg·L^(-1) KIN preconditioning,MS with 0.05 mg·L^(-1) KIN(postconditioning)and 75.0%red LED.Rooting was successfully achieved with naphthalene acetic acid and activated charcoal.Additionally,three different powerful AI-based models,namely,extreme gradient boost(XGBoost),random forest(RF),and the artificial neural network-based multilayer perceptron(MLP)regression models validated the findings.Conclusion GSN-12 outperformed STN-468 with optimal results from 5 mg·L^(-1) KIN+1/4MS+80%red LED.Application of machine learning-based prediction models to optimize cotton tissue culture protocols for shoot regeneration is helpful to improve cotton regeneration efficiency. 展开更多
关键词 Machine learning cotton In vitro regeneration Light emitting diodes OPTIMIZATION KINETIN
在线阅读 下载PDF
Decreased active cytokinin levels inhibited the cytokinin signaling pathways to increase the lateral root number in mepiquat chloride-treated cotton(Gossypium hirsutum L.)seedlings
4
作者 ZHANG Man ZHANG Jiaqi +5 位作者 CHEN Yujie WU Yixuan SHI Yang XING Haiyan CHEN Xiaojiao WANG Baomin 《Journal of Cotton Research》 2025年第3期402-417,共16页
Background Mepiquat chloride(MC)is a widely used plant growth regulator in cotton(Gossypium hirsutum L.).It regulates endogenous hormone content and crosstalk to control plant height and promote lateral root(LR)develo... Background Mepiquat chloride(MC)is a widely used plant growth regulator in cotton(Gossypium hirsutum L.).It regulates endogenous hormone content and crosstalk to control plant height and promote lateral root(LR)development.However,the roles of cytokinins(CTKs)in the MC-induced increase in LR number in cotton seedlings remain unclear.Therefore,in this study,whole-genome transcriptome analysis was performed to elucidate the molecular mechanisms,CTK transformation,and CTK signaling pathway response to MC in cotton roots.Results In the present study,MC reduced the contents of the active CTK trans-zeatin(tZ)and N^(6)-isopentenyladenine(iP)but increased the levels of the nucleoside CTK trans-zeatin riboside(tZR)and N^(6)-isopentenyladenine riboside(iPR).RNA-seq data showed that the CTK biosynthesis genes GhIPTs and active CTK catabolism genes GhCKXs were obviously upregulated after MC treatment.The CTK-activating enzyme gene GhLOGs was repressed compared with the control.Furthermore,MC inhibited the expression of GhAHK4 and GhARR2/12,which are involved in the CTK signaling pathway,and activated the IAA-IAA14-ARF7/19 signaling module.Meanwhile,MC increased the expression levels of genes involved in sucrose synthesis,the cell cycle,cell division,and cell wall biosynthesis pathways.Silencing the GhCKX family separately decreased the LR number and active indole-3-acetic acid(IAA)level.The expression levels of GhPIN1,GhARF7,GhARF19,GhLBD16,GhLBD18,GhLBD29,and GhLBD33 were downregulated,but GhARR2/12 and GhIAA14 were upregulated.The total content of active CTKs was noticeably increased.The results of silencing the GhLOGs family were opposite to those of silencing GhCKXs.Silencing GhARR12 could upregulate GhPIN1 expression and increase LR number.In addition,the silenced GhCKXs,GhLOGs,and GhARR12 were less responsive to MCinduced LR growth than the control.Conclusion These results suggested that MC treatment could upregulate CTK-nucleoside biosynthesis and CTK metabolism genes to decrease active CTK levels,promoting crosstalk between CTKs and auxin signaling pathways to enhance LR initiation. 展开更多
关键词 AUXIN CYTOKININS gossypium hirsutum L. Mepiquat chloride RNA-seq Seed soak Agroinoculation-Virus-induced gene silencing(VIGS)
在线阅读 下载PDF
Introduction of Bacillus thuringiensis(Bt)gene does not reduce potassium use efficiency of Bt transgenic cotton(Gossypium hirsutum L.) 被引量:1
5
作者 WANG Qianqian YAN Wei +7 位作者 ZHANG Yichi ZHAN Manman LUO Xiaoli ENEJI AEgrinya ZHANG Anhong XIAO Juanli LI Fangjun TIAN Xiaoli 《Journal of Cotton Research》 CAS 2022年第3期274-284,共11页
Background:Potassium(K)deficiency has become a common field production problem following the widespread adoption of Bacillus thuringiensis(Bt)transgenic cotton(Gossypium hirsutum L.)worldwide.The purpose of this study... Background:Potassium(K)deficiency has become a common field production problem following the widespread adoption of Bacillus thuringiensis(Bt)transgenic cotton(Gossypium hirsutum L.)worldwide.The purpose of this study was to clarify whether the introduction of Bt gene directly reduces the K-use efficiency of cotton to induce K deficiency.Results:The cotton variety,Jihe 321(wild type,WT)and its two Bt(Cry1Ac)-transgenic overexpression lines(OE-29317,OE-29312)were studied in field with low soil-test K+(47.8 mg·kg^(−1)).In the field with low soil-test K+,only OE-29317 had less biomass and K+accumulation than the WT at some growth stages.Both Bt lines produced similar or even greater seed cotton yield than WT in the field.When the Bt gene(~70%)in OE-29317 and OE-29312 plants was silenced by virus-induced gene silencing(VIGS),the VIGS-Bt plants did not produce more biomass than VIGSgreen fluorescent protein(control)plants.Conclusions:The introduction of Bt gene did not necessarily hinder the K use efficiency of the cotton lines under this study. 展开更多
关键词 Biomass Bt(Bacillus thuringiensis)gene cotton(gossypium hirsutum L.) K uptake K utilization index Yield
在线阅读 下载PDF
Fine Mapping of Fertility Restoring Gene for Cytoplasmic Male Sterility in Cotton (Gossypium spp. ) Using RAPD and SSR 被引量:1
6
作者 Li-wang LIU,Wang-zhen GUO,Xie-fei ZHU,Tian-zhen ZHANG(Cotton Research Institute, National Key Laboratory of Crop Genetics and Germplasm Enhancement Nanjing Agricultural University, Nanjing 210095, China) 《棉花学报》 CSCD 北大核心 2002年第S1期21-21,共1页
The heterosis in cotton is much significant,especially in increasing yield andfiber quality.Comparing with hand-emasculation andpollination,and genetic male sterile lines,utilization of CMS lines is much more effectiv... The heterosis in cotton is much significant,especially in increasing yield andfiber quality.Comparing with hand-emasculation andpollination,and genetic male sterile lines,utilization of CMS lines is much more effectiveand economical in producing commercial hybridseeds.Since 1965 in the world,several CMSlines have been developed,such as CMS 展开更多
关键词 gossypium cotton cotton STERILE fertility Mapping producing tightly ALLELE populations
在线阅读 下载PDF
Molecular Marker-assisted Selection for Verticillium Wilt Resistance in Upland Cotton (Gossypium hirsutum) 被引量:1
7
作者 Shui-jin ZHU, Wei-ping FANG, Dao-fan JI(College oj Agriculture and Biotechnology, Zhejiang University, Hangzhou 310029, China) 《棉花学报》 CSCD 北大核心 2002年第S1期29-29,共1页
Verticillium wilt is a global important disease ofcotton,which threatens the development ofcotton production seriously.Recent years,because of the change in climate and croppingpattern,Verticillium wilt was broke out ... Verticillium wilt is a global important disease ofcotton,which threatens the development ofcotton production seriously.Recent years,because of the change in climate and croppingpattern,Verticillium wilt was broke out incotton production areas in China,which 展开更多
关键词 VERTICILLIUM gossypium cotton cotton Selection seriously breeding Marker UPLAND BROKE
在线阅读 下载PDF
Genetic analysis of yield and fiber quality traits in upland cotton(Gossypium hirsutum L.) cultivated in different ecological regions of China 被引量:9
8
作者 SHAHZAD Kashif LI Xue +9 位作者 QI Tingxiang GUO Liping TANG Huini ZHANG Xuexian WANG Hailin ZHANG Meng ZHANG Bingbing QIAO Xiuqin XING Chaozhu WU Jianyong 《Journal of Cotton Research》 2019年第2期122-132,共11页
Background:Cotton is an important fiber crop worldwide.The yield potential of current genotypes of cotton can be exploited through hybridization.However,to develop superior hybrids with high yield and fiber quality tr... Background:Cotton is an important fiber crop worldwide.The yield potential of current genotypes of cotton can be exploited through hybridization.However,to develop superior hybrids with high yield and fiber quality traits,information of genetic control of traits is prerequisite.Therefore,genetic analysis plays pivotal role in plant breeding.Results:In present study,North Carolina II mating design was used to cross 5 female parents with 6 male parents to produce 30 intraspecific F1cotton hybrids.All plant materials were tested in three different ecological regions of China during the year of 2016-2017.Additive-dominance-environment(ADE)genetic model was used to estimate the genetic effects and genotypic and phenotypic correlation of yield and fiber quality traits.Results showed that yield traits except lint percentage were mainly controlled by genetic and environment interaction effects,whereas lint percentage and fiber quality traits were determined by main genetic effects.Moreover,dominant and additiveen vironine nt in teraction effects had more influence on yield traits,whereas additive and domi nance-e nviron ment interaction effects were found to be predominant for fiber traits.Broad-sense and its interaction heritability were significant for all yield and most of fiber quality traits.Narrow-sense and its interaction heritability were non-significant for boll number and seed cotton yield.Correlation analysis indicated that seed cotton yield had significant positive correlation with other yield attributes and non-significant with fiber quality traits.All fiber quality traits had signiflcant positive correlation with each other except micronaire.Conclusions:Results of current study provide important information about genetic control of yield and fiber quality traits.Further,this study identified that parental lines,e.g.,SJ48-1,ZB-1,851-2,and DT-8 can be utilized to improve yield and fiber quality traits in cotton. 展开更多
关键词 cotton Hybrid Genetic effects ADDITIVE DOMINANCE Correlation
在线阅读 下载PDF
Combining ability of Egyptian cotton(Gossypium barbadense L.)reveals genetic potential for improved yield and fiber quality 被引量:1
9
作者 Abdelghany Ahmed M. El-Banna Aly A.A. +5 位作者 Lamlom Sobhi F El-Sorady Gawhara A. Salama Ehab A.A. Ren Honglei Shaibu Abdulwahab S. Yehia Waleed M.B. 《Journal of Cotton Research》 CAS 2024年第2期109-122,共14页
Background As the most widely cultivated fiber crop,cotton production depends on hybridization to unlock the yield potential of current varieties.A deep understanding of genetic dissection is crucial for the cultivati... Background As the most widely cultivated fiber crop,cotton production depends on hybridization to unlock the yield potential of current varieties.A deep understanding of genetic dissection is crucial for the cultivation of enhanced hybrid plants with desired traits,such as high yield and fine fiber quality.In this study,the general combining ability(GCA)and specific combining ability(SCA)of yield and fiber quality of nine cotton parents(six lines and three testers)and eighteen F1 crosses produced using a line×tester mating design were analyzed.Results The results revealed significant effects of genotypes,parents,crosses,and interactions between parents and crosses for most of the studied traits.Moreover,the effects of both additive and non-additive gene actions played a notably significant role in the inheritance of most of the yield and fiber quality attributes.The F1 hybrids of(Giza 90×Aust)×Giza 86,Uzbekistan 1×Giza 97,and Giza 96×Giza 97 demonstrated superior performance due to their favorable integration of high yield attributes and premium fiber quality characteristics.Path analysis revealed that lint yield has the highest positive direct effect on seed cotton yield,while lint percentage showed the highest negative direct effect on seed cotton yield.Principal component analysis identified specific parents and hybrids associated with higher cotton yield,fiber quality,and other agronomic traits.Conclusion This study provides insights into identifying potential single-and three-way cross hybrids with superior cotton yield and fiber quality characteristics,laying a foundation for future research on improving fiber quality in cotton. 展开更多
关键词 gossypium barbadense L. Combining ability Seed cotton yield Fiber quality Cluster analysis Path analysis
在线阅读 下载PDF
Selection and Characterization of a Novel Glyphosate Tolerant Upland Cotton(Gossypium hirsutum L.) Mutant(R1098) 被引量:1
10
作者 DAUD M K 《棉花学报》 CSCD 北大核心 2008年第S1期88-,共1页
Stepwise selection approach was adopted to obtain glyphosate-tolerant upland cotton mutant(R1098) from the embryogenic calli of Coker 312(Gossypium hirsutum L.).The calli were transferred to selection medium and multi... Stepwise selection approach was adopted to obtain glyphosate-tolerant upland cotton mutant(R1098) from the embryogenic calli of Coker 312(Gossypium hirsutum L.).The calli were transferred to selection medium and multi-step selection pressure process was carried out until the 展开更多
关键词 line Selection and Characterization of a Novel Glyphosate Tolerant Upland cotton gossypium hirsutum L MUTANT
在线阅读 下载PDF
An Integrated Genetic,Physical and Transcript Map of Homoeologous Chromosomes 12 and 26 in Upland Cotton(Gossypium hirsutum L.) 被引量:2
11
作者 KOHEL Russell J CHO Jaemin TOMKINS Jeffrey YU John Z 《棉花学报》 CSCD 北大核心 2008年第S1期22-,共1页
While Upland cotton(Gossypium hirsutum L.) represents 95% of the world production,its genetic improvement is hindered by the shortage of effective genomic tools and resources.The
关键词 An Integrated Genetic Physical and Transcript Map of Homoeologous Chromosomes 12 and 26 in Upland cotton gossypium hirsutum L
在线阅读 下载PDF
Genetic effects conferring heat tolerance in upland cotton(Gossypium hirsutum L.) 被引量:3
12
作者 SALMAN Muhammad ZIA Zia Ullah +4 位作者 RANA Iqrar Ahmad MAQSOOD Rana Haroon AHMAD Saghir BAKHSH Ali AZHAR Muhammad Tehseen 《Journal of Cotton Research》 2019年第1期56-63,共8页
Background:Climate change and particularly global warming has emerged as an alarming threat to the crop productivity of field crops and exerted drastic effects on the cropping patterns.Production of cotton has been dr... Background:Climate change and particularly global warming has emerged as an alarming threat to the crop productivity of field crops and exerted drastic effects on the cropping patterns.Production of cotton has been dropped down to one million bales from 1.4 million bales since 2015 in Pakistan due to the increase in temperature at critical growth stages,i.e.,flowering and boll formation.Keeping in view the importance of cotton in the country,this study was conducted to investigate the genetic effects conferring heat tolerance in six populations(P1,P2,F1,F2,BC1 and BC2)developed from cross-1 and cross-2,i.e.,VH-282×FH-142 and DNH-40×VH-259.Results:The results revealed that cross-1 performed better in heat stress as compared with cross-2 for majority of the traits recorded.Boll weight and ginning outturn(GO-T)were highly effected under heat stress and had negative correlation with Relative cell injury(RCI).Boll weight,fiber length,fiber strength and fiber fineness were under the control of non-additive gene action,whereas RCI was controlled by additive gene effects.Lower values of genetic advance coupled with higher values of broad sense heritability for these traits except RCI confirmed the role of non-additive genetic effects.Duplicate types of epistasis were recorded for fiber strength in cross-1 in normal condition.However,complementary type of non-allelic interaction was recorded for fiber strength under normal condition,fiber fineness and RCI under heat stressed condition in cross-1.Likewise,boll weight,GOT and fiber length in populations derived from cross-2 in normal condition were also under the influence of complementary type of non-allelic interaction.Significant differences among values of mid parent and better parent heterosis for boll weight in both normal and heat stress condition provided the opportunity to cotton breeders for utilization of this germplasm for improvement of this trait through exploitation of heterosis breeding.Conclusion:Cross-1 performed better in heat stress and could be utilized for development of heat tolerant cultivar.RCI was under the influence of additive gene action,so one can rely on this trait for screening of large number of accessions of cotton for heat stress.While other traits were predominantly controlled by non-additive gene action and selection based on these should be delayed in later generations. 展开更多
关键词 Heat stress HERITABILITY HETEROSIS Relative cell INJURY UPLAND cotton
在线阅读 下载PDF
Sequencing the Cotton Genomes-Gossypium spp. 被引量:2
13
作者 PATERSON Andrew H 《棉花学报》 CSCD 北大核心 2008年第S1期3-,共1页
The genomes of most major crops,including cotton,will be fully sequenced in the next few years.Cotton is unusual,although not unique,in that we will need to sequence not only
关键词 Sequencing the cotton Genomes-gossypium spp will
在线阅读 下载PDF
Genetic variability predicting breeding potential of upland cotton(Gossypium hirsutum L.)for high temperature tolerance 被引量:2
14
作者 FAROOQ Amjad SHAKEEL Amir +5 位作者 SAEED Asif FAROOQ Jehanzeb RIZWAN Muhammad CHATTHA Waqas Shafqat SARWAR Ghulam RAMZAN Yasir 《Journal of Cotton Research》 CAS 2023年第2期81-97,共17页
Background High temperature stress at peak flowering stage of cotton is a major hindrance for crop potential.This study aimed to increase genetic divergence regarding heat tolerance in newly developed cultivars and hy... Background High temperature stress at peak flowering stage of cotton is a major hindrance for crop potential.This study aimed to increase genetic divergence regarding heat tolerance in newly developed cultivars and hybrids.Fifty cotton genotypes and 40 F1(hybrids)were tested under field conditions following the treatments,viz.,high temperature stress and control at peak flowering stage in August and October under April and June sowing,respectively.Results The mean squares revealed significant differences among genotypes,treatments,genotype×treatment for relative cell injury,chlorophyll contents,canopy temperature,boll retention and seed cotton yield per plant.The genetic diversity among 50 genotypes was analyzed through cluster analysis and heat susceptibility index(HSI).The heat tolerant genotypes including FH-Noor,NIAB-545,FH-466,FH-Lalazar,FH-458,NIAB-878,IR-NIBGE-8,Weal-AGShahkar,and heat sensitive,i.e.,CIM-602,Silky-3,FH-326,SLH-12 and FH-442 were hybridized in line×tester fashion to produce F1 populations.The breeding materials’populations(40 F1)revealed higher specific combining ability variances along with dominance variances,decided the non-additive type gene action for all the traits.The best general combining ability effects for most of the traits were displayed by the lines,i.e.,FH-Lalazar,NIAB-878 along with testers FH-326 and Silky-3.Specific combining ability effects and better-parent heterosis were showed by the crosses,viz.,FH-Lalazar×Silky-3,FH-Lalazar×FH-326,NIAB-878×Silky-3,and NIAB-878×FH-326 for seed cotton yield and yield contributing traits under high temperature stress.Conclusion Heterosis breeding should be carried out in the presence of non-additive type gene action for all the studied traits.The best combiner parents with better-parent heterosis may be used in crossing program to develop high yielding cultivars,and hybrids for high temperature stress tolerance. 展开更多
关键词 High temperature Upland cotton Peak flowering HETEROSIS Gene action Combining ability
在线阅读 下载PDF
Introgression of Gossypium klotzschianum Genome into Cultivated Cotton,G.hirsutum 被引量:1
15
作者 SHEN Xin-lian,ZHANG Xiang-gui,YANG Yu-wen,CAO Zhi-bin,NI Wan-chao(Jiangsu Academy of Agricltural Science,50 Tongwei Rood,Nanjing,Jiangsu 210014,China) 《棉花学报》 CSCD 北大核心 2008年第S1期31-,共1页
Exotic Gossypium germplasm is a rich source of useful agronomic traits for improvement programs of cultivated cotton.Efficient use of genetic variation available in the wild relatives depends
关键词 Introgression of gossypium klotzschianum Genome into Cultivated cotton G.hirsutum
在线阅读 下载PDF
Screening and evaluation of reliable traits of upland cotton(Gossypium hirsutum L.)genotypes for salt tolerance at the seedling growth stage 被引量:8
16
作者 SIKDER Ripon Kumar WANG Xiangru +6 位作者 JIN Dingsha ZHANG Hengheng GUI Huiping DONG Qiang PANG Nianchang ZHANG Xiling SONG Meizhen 《Journal of Cotton Research》 2020年第2期90-102,共13页
Background:Salt stress significantly inhibits the growth,development,and productivity of cotton because of osmotic,ionic,and oxidative stresses.Therefore,the screening and development of salt tolerant cotton cultivars... Background:Salt stress significantly inhibits the growth,development,and productivity of cotton because of osmotic,ionic,and oxidative stresses.Therefore,the screening and development of salt tolerant cotton cultivars is a key issue towards sustainable agriculture.This study subjected 11 upland cotton genotypes at the seedling growth stage to five different salt concentrations and evaluated their salt tolerance and reliable traits.Results:Several morpho-physiological traits were measured after 10 days of salinity treatment and the salt tolerance performance varied significantly among the tested cotton genotypes.The optimal Na Cl concentration for the evaluation of salt tolerance was 200 mmol·L-1.Membership function value and salt tolerance index were used to identify the most consistent salt tolerance traits.Leaf relative water content and photosynthesis were identified as reliable indicators for salt tolerance at the seedling stage.All considered traits related to salt tolerance indices were significantly and positively correlated with each other except for malondialdehyde.Cluster heat map analysis based on the morpho-physiological salt tolerance-indices clearly discriminated the 11 cotton genotypes into three different salt tolerance clusters.Cluster I represented the salt-tolerant genotypes(Z9807,Z0228,and Z7526)whereas clusters II(Z0710,Z7514,Z1910,and Z7516)and III(Z0102,Z7780,Z9648,and Z9612)represented moderately salttolerant and salt-sensitive genotypes,respectively.Conclusions:A hydroponic screening system was established.Leaf relative water content and photosynthesis were identified as two reliable traits that adequately represented the salt tolerance of cotton genotypes at the seedling growth stage.Furthermore,three salt-tolerant genotypes were identified,which might be used as genetic resources for the salt-tolerance breeding of cotton. 展开更多
关键词 cotton genotypes Salt stress Screening Membership function value Cluster analysis
在线阅读 下载PDF
Characterization of an Organ Specific and Pathogen Responsive CC-NBS-LRR Gene from Cotton(Gossypium hirsutum L.) 被引量:3
17
作者 ZHANG Bao-long,NI Wan-chao,YANG Yu-wen,SHEN Xin-lian(Institute of Agro-biotechnology,Jiangsu Academy of Agricultural Sciences,Zhongling Street 50,Nanjing 210014,China) 《棉花学报》 CSCD 北大核心 2008年第S1期74-,共1页
Cotton diseases represent a major challenge to cotton growth.Cloning of a cotton pathogen response gene and promoter is of great importance to improve disease resistance.In this study,a
关键词 LRR NBS Characterization of an Organ Specific and Pathogen Responsive CC-NBS-LRR Gene from cotton CC
在线阅读 下载PDF
Growth,leaf anatomy,and photosynthesis of cotton(Gossypium hirsutum L.)seedlings in response to four light-emitting diodes and high pressure sodium lamp 被引量:1
18
作者 ZHANG Yichi LIAO Baopeng +3 位作者 LI Fangjun ENEJI AEgrinya DU Mingwei TIAN Xiaoli 《Journal of Cotton Research》 CAS 2024年第1期79-89,共11页
Background Light is a critical factor in plant growth and development,particularly in controlled environments.Light-emitting diodes(LEDs)have become a reliable alternative to conventional high pressure sodium(HSP)lamp... Background Light is a critical factor in plant growth and development,particularly in controlled environments.Light-emitting diodes(LEDs)have become a reliable alternative to conventional high pressure sodium(HSP)lamps because they are more efficient and versatile in light sources.In contrast to well-known specialized LED light spectra for vegetables,the appropriate LED lights for crops such as cotton remain unknown.Results In this growth chamber study,we selected and compared four LED lights with varying percentages(26.44%–68.68%)of red light(R,600–700 nm),combined with other lights,for their effects on growth,leaf anatomy,and photosynthesis of cotton seedlings,using HSP lamp as a control.The total photosynthetic photon flux density(PPFD)was(215±2)μmol·m-2·s-1 for all LEDs and HSP lamp.The results showed significant differences in all tested parameters among lights,and the percentage of far red(FR,701–780 nm)within the range of 3.03%–11.86%was positively correlated with plant growth(characterized by leaf number and area,plant height,stem diameter,and total biomass),palisade layer thickness,photosynthesis rate(Pn),and stomatal conductance(Gs).The ratio of R/FR(4.445–11.497)negatively influenced the growth of cotton seedlings,and blue light(B)suppressed stem elongation but increased palisade cell length,chlorophyll content,and Pn.Conclusion The LED 2 was superior to other LED lights and HSP lamp.It had the highest ratio of FR within the total PPFD(11.86%)and the lowest ratio of R/FR(4.445).LED 2 may therefore be used to replace HPS lamp under controlled environments for the study of cotton at the seedling stage. 展开更多
关键词 cotton seedling Light-emitting diodes BIOMASS Palisade cell PHOTOSYNTHESIS
在线阅读 下载PDF
Metabolic profile analysis based on GC-TOF/MS and HPLC reveals the negative correlation between catechins and fatty acids in the cottonseed of Gossypium hirsutum 被引量:1
19
作者 MA Lei CHEN Yabing +5 位作者 XU Shuangjiao DONG Ruidan WANG Yiwen FANG Dan PENG Jun TIAN Xinquan 《Journal of Cotton Research》 2022年第2期185-192,共8页
Background: The diversified and high value-added utilization of cotton by products can promote the sustainable development of modern agriculture. Di erences in potential nutrients among varieties can be explained by v... Background: The diversified and high value-added utilization of cotton by products can promote the sustainable development of modern agriculture. Di erences in potential nutrients among varieties can be explained by variations in the composition and abundance of fatty acids, polyphenols, carbohydrates, amino acids, and organic acids. Therefore, the analysis of metabolite species and relationships in cottonseed is meaningful for the development of cotton byproducts.Results: In this study, the metabolomes of three representative cotton cultivars of di erent species were compared using untargeted GC-TOF/MS analysis. A total of 263 metabolites were identified from 705 peaks, and their levels were compared across cultivars. Principal component analysis and OPLS-DA clearly distinguish these samples based on metabolites. There were significant di erences in the contents of amino acids, carbohydrates, organic acids, flavonoids, and lipids in G. hirsutum TM-1 compared with G. arboreum Shixiya1 and G. barbadense Hai7124. Notably, the bioactive nutrient compound catechin obtained from the di erential metabolites significantly accumulated in TM-1. Furthermore, a comprehensive analysis using catechin and oil-related traits was conducted in core collections of Gossypium hirsutum. The results revealed the reliability of the GC-TOF/MS analysis, as well as that catechin content has a negative association with myristic acid, palmitic acid, stearic acid, oleic acid, linoleic acid, arachidic acid, and total fatty acids.Conclusion: These findings suggest that untargeted GC-TOF/MS analysis could provide a new method for investigating the underlying plant biochemistry of nutrient variation in cottonseed, and that catechin content has a negative association with oil-related traits in cottonseed. This study may pave the way to exploit the value of cotton byproducts. 展开更多
关键词 cotton Metabolic profile GC^TOF/MS CATECHIN Fatty add
在线阅读 下载PDF
Sequencing of a Cultivated Diploid Cotton Genome-Gossypium arboreum 被引量:2
20
作者 WILKINS Thea A 《棉花学报》 CSCD 北大核心 2008年第S1期5-,共1页
Sequencing the genomes of crop species and model systems contributes significantly to our understanding of the organization,structure and function of plant genomes.In a `white paper' published in 2007,the cotton c... Sequencing the genomes of crop species and model systems contributes significantly to our understanding of the organization,structure and function of plant genomes.In a `white paper' published in 2007,the cotton community set forth a strategic plan for sequencing the AD genome of cultivated upland cotton that initially targets less complex diploid genomes.This strategy banks on the high 展开更多
关键词 Sequencing of a Cultivated Diploid cotton Genome-gossypium arboreum GENE
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部