Semiconductors and related fields today hold vast application prospects.The semiconductor wafer fabrication process involves steps such as substrate preparation and epitaxy,which occur in high-temperature corrosive en...Semiconductors and related fields today hold vast application prospects.The semiconductor wafer fabrication process involves steps such as substrate preparation and epitaxy,which occur in high-temperature corrosive environments.Consequently,components like crucibles,susceptors and wafer carriers require carbon-based materials such as graphite and carbon-carbon composites.However,traditional carbon materials underperform in these extreme conditions,failing to effectively address the challenges.This leads to issues including product contamination and shortened equipment lifespan.Therefore,effective protection of carbon materials is crucial.This paper reviews current research status on the preparation methods and properties of corrosion-resistant coatings within relevant domestic and international fields.Preparation methods include various techniques such as physical vapor deposition(PVD),chemical vapor deposition(CVD)and the sol-gel method.Furthermore,it offers perspectives on future research directions for corrosion-resistant coated components in semiconductor equipment.These include exploring novel coating materials,improving coating preparation processes,enhancing coating corrosion resistance,as well as further investigating the interfacial interactions between coatings and carbon substrates to achieve better adhesion and compatibility.展开更多
In this investigation,we examined the high-temperature corrosion behavior of three nickel-based single-crystal superalloys subjected to a mixed molten salt environment of Na_(2)SO_(4)and NaCl at 700℃,leading to a pre...In this investigation,we examined the high-temperature corrosion behavior of three nickel-based single-crystal superalloys subjected to a mixed molten salt environment of Na_(2)SO_(4)and NaCl at 700℃,leading to a preliminary elucidation of their molten salt corrosion mechanisms.By further comparing the corrosion degree of the three nickel-based single-crystal superalloys combined with the Gibbs free energy calculation of the corrosion products,the influence of alloying elements on the corrosion performance of nickel-based single-crystal superalloys was analyzed.It was established that the corrosion mechanism of these nickel-based single-crystal superalloys predominantly involves a cyclic process of oxide layer formation and decomposition,ultimately resulting in the establishment of a protective layer principally composed of NiO,with a constantly regenerating Al2O3 barrier,impeding further alloy degradation.Furthermore,the inclusion of elements such as Cr,Al,Ta,and notably Re has been found to markedly improve the thermal corrosion resistance of the superalloys.These insights not only enhance our comprehension of the corrosion mechanisms pertinent to nickel-based superalloys,but also provide strategic directions for alloy composition refinement aimed at bolstering their corrosion resilience.展开更多
To advance the understanding of the corrosion behavior of stainless steel bellows in marine atmospheric environments and enhance the precision of service life predictions,this study employs finite element simulations ...To advance the understanding of the corrosion behavior of stainless steel bellows in marine atmospheric environments and enhance the precision of service life predictions,this study employs finite element simulations to investigate the pitting corrosion rates and pit morphologies of bellows peaks and troughs under varying electrolyte film thicknesses.The model incorporates localized electrochemical reactions,oxygen concentration,and homogeneous solution reactions.For improved computational accuracy,the fitted polarization curve data were directly applied as nonlinear boundary conditions on the electrode surface via interpolation functions.Simulation results reveal that the peak regions exhibit faster corrosion rates than the trough regions.With increasing electrolyte film thickness(from 10μm to 500μm),corrosion rates at both peaks and troughs decrease progressively,and after 120 hours of simulation,the maximum corrosion rate at the peaks declines from 0.720 mm/a to 0.130 mm/a,and at the troughs from 0.520 mm/a to 0.120 mm/a,with the disparity in corrosion rates diminishing over time.Furthermore,as corrosion progresses,pits propagate deeper into the substrate,exhibiting both vertical penetration and lateral expansion along the passive film interface,ultimately breaching the substrate.This research offers valuable insights into designing corrosion mitigation strategies for stainless steel bellows in marine environments.展开更多
Graphene oxide (GO) reduced by Stachys lavandulifolia extract (SLE) was produced and characterised. The anti-corrosion behaviour of epoxy coatings containing GO and rGO nanosheets was investigated. FESEM-EDS, FT-IR, a...Graphene oxide (GO) reduced by Stachys lavandulifolia extract (SLE) was produced and characterised. The anti-corrosion behaviour of epoxy coatings containing GO and rGO nanosheets was investigated. FESEM-EDS, FT-IR, and Raman spectroscopy were used to examine the microstructure and chemical composition of the nanosheets and epoxy coatings. EIS experiment was used to explore the corrosion behaviour of the coatings. The O/C ratio for GO and rGO-SLE was found to be 2.5 and 4.5, indicating a decrease in the carbon content after the reduction of GO, confirming the adsorption of SLE onto the GO nanosheets. The successful reduction of GO in the presence of SLE particles was confirmed by disappearing the C=O peak and a significant decrease in the C-O-C bond intensity. The epoxy/rGO- SLE coatings exhibited the highest double-layer thickness and excellent corrosion resistance compared to neat epoxy and epoxy/GO coatings, emphasizing the significant role of rGO in enhancing the protective performance of epoxy coatings. The highest values for total charge transfer and film resistances and the inhibition efficiency were observed to be 6529 Ω·cm^(2) and 90%, respectively, for the epoxy/rGO-SLE coated steel plate. It was also found that the epoxy/0.15 wt.% rGO-SLE coating demonstrates the best corrosion resistance performance.展开更多
Magnesium alloys as medical implant materials necessitate a lower and adjustable corrosion rate for clinical applications.The microstructure and corrosion behavior of AZ31Mn-xEr(x=0.1,0.5,1.2)alloys were systematicall...Magnesium alloys as medical implant materials necessitate a lower and adjustable corrosion rate for clinical applications.The microstructure and corrosion behavior of AZ31Mn-xEr(x=0.1,0.5,1.2)alloys were systematically investigated using optical microscopy(OM),scanning electron microscopy(SEM),and X-ray photoelectron spectroscopy(XPS),combined with Tafel polarization and electrochemical impedance spectroscopy(EIS)analyses.The findings showed that the alloying element Er refined the grain structure during solidification by increasing the nucleation rate and forming a secondary phase of Al_(3)Er with Al.The Er and Mg in the matrix co-oxidize to form a dense MgO/Er_(2)O_(3)composite oxide,preventing the formation of loose magnesium hydroxide/basic magnesium carbonate.The trace alloying element Mn interacts with impurities Fe in the magnesium matrix to form an AlFeMn second phase,reducing micro-galvanic corrosion driving force.Electrochemical testing in a 3.5%NaCl solution demonstrated a marked reduction in corrosion rate from 10.46 mm/a(AZ 31 Mn alloy)to 0.44 mm/a(AZ31Mn-1.2Er alloy).This research offers a reference for searching for corrosion-resistant magnesium alloy and degradable medical magnesium alloy materials.展开更多
The influence of grain size or grain refinement on the corrosion of Zr alloy is clarified by employing a series of electrochemical analyses and characterization techniques.The corrosion resistance,as a function of exp...The influence of grain size or grain refinement on the corrosion of Zr alloy is clarified by employing a series of electrochemical analyses and characterization techniques.The corrosion resistance,as a function of exposure time,F−concentration,and solution temperatures,of Zr alloys with different grain sizes is ascertained.The results confirm that refining the grain size can effectively enhance the short-time corrosion properties of Zr alloy in HNO_(3) with F−.The fine grained Zr alloy(~10μm in diameter)consistently exhibits a lower corrosion current density,ranging from 18%to 46%lower than that of the coarse-grained Zr alloy(~44μm).The enhanced corrosion resistance is attributed to the high density grain boundaries,which promote oxide stability,and accelerate the creation of the protective layer.The high corrosion rate and pseudo-passivation behavior of Zr alloys in fluorinated nitric acid originate from the accelerated“dissolution-passivation”of the oxide film.However,the grain refinement does not provide enduring anti-corrosion for Zr alloys.To meet the operation of spent fuel reprocessing,additional systematic efforts are required to evaluate the long term effect of grain refinement.展开更多
It is of great significance to study the corrosion process of aluminum(Al)alloys fasteners in order to mitigate corrosion for their widespread applications.In this paper,a method for enhancing the corrosion resistance...It is of great significance to study the corrosion process of aluminum(Al)alloys fasteners in order to mitigate corrosion for their widespread applications.In this paper,a method for enhancing the corrosion resistance of Al alloy fasteners is proposed.7075 Al alloy parts with a fine-grained microstructure were prepared by pre-heat treatment(PHT),combined subsequent equal channel angular pressing(ECAP)and cold upsetting(CU).The corrosion behavior of the specimens was investigated by intergranular corrosion and electrochemical test.Microstructure investigations were carried out by field emission scanning electron microscopy,energy dispersive spectrometer and transmission electron microscopy.The relationship between microstructural evolution and corrosion resistance changes was also explored.The results show that both PHT and ECAP-CU significantly improved the corrosion resistance of the samples and modified the corrosion process.The open circuit potential,corrosion current density and corrosion rate of the alloy on electrochemical test were(-0.812±8.854)×10^(-5) V(vs.SCE),(6.379±0.025)×10^(-6) A/cm^(2) and 0.066 mm/year,respectively,and the intergranular corrosion depth was(557±8)μm.The main factor controlling the corrosion behavior was the microstructure evolution.After PHT,the disappearance of the dendritic structure and the dissolution of the nonequilibrium second phase eliminated the potential difference between the phases,reducing the free energy in the as cast state.When ECAP-CU was used after PHT,the grain refinement was accompanied by a high density of grain boundaries and dislocations,which led to the formation of a denser passivation film on the alloy surface,improving the corrosion resistance in an aggressive environment.展开更多
The effects of Yb/Zr micro-alloying on the microstructure,mechanical properties,and corrosion resistance of an Al-Zn-Mg-Cu alloy were systematically investigated.Upon the addition of Yb/Zr to the Al-Zn-Mg-Cu alloy,the...The effects of Yb/Zr micro-alloying on the microstructure,mechanical properties,and corrosion resistance of an Al-Zn-Mg-Cu alloy were systematically investigated.Upon the addition of Yb/Zr to the Al-Zn-Mg-Cu alloy,the grain boundaries were pinned by high-density nanosized Al_(3)(Yb,Zr)precipitates during extrusion deformation,consequently,the average grain size was significantly reduced from 232.7μm to 3.2μm.This grain refinement contributed substantially to the improvement in both strength and elongation.The ultimate tensile strength,yield strength,and elongation of the Yb/Zr modified alloy increased to 705.3 MPa,677.6 MPa,and 8.7%,respectively,representing enhancements of 16.2%,19.3%,and 112.2%compared to the unmodified alloy.Moreover,the distribution of MgZn_(2)phases along grain boundaries became more discontinuous in the Yb/Zr modified alloy,which effectively retarded the propagation of intergranular corrosion and improved the corrosion resistance.展开更多
Because of an unfortunate mistake by authors,the Project(5227010679)of Foundation item was wrong.The corrected Project is shown as follows:Project(52271073).
This study examines the effects of friction stir welding(FSW)and post-weld heat treatment(PWHT)on the grain boundary character distribution and corrosion resistance of cross sectional(top and bottom)regions of nickel-...This study examines the effects of friction stir welding(FSW)and post-weld heat treatment(PWHT)on the grain boundary character distribution and corrosion resistance of cross sectional(top and bottom)regions of nickel-and molybdenum-free high-nitrogen austenitic stainless steel(HNASS).FSW at 400 rpm and 30 mm/min resulted in finer grains(4.18μm)and higher coincident site lattice(CSL)boundaries(32.3%)at the top of the stir zone(SZ)due to dynamic recrystallization(DRX).PWHT at 900℃for 1 h led to grain coarsening(12.91μm the bottom SZ)but enhanced CSL boundaries from 24.6%to 30.2%,improving grain boundary stability.PWHT reduced the kernel average misorientation(KAM)by 14.9%in the SZ-top layer and 20.4%in the SZ-bottom layer,accompanied by a 25%decrease in hardness in the SZ-top layer and 26.7%in the SZ-bottom layer,indicating strain recovery and reduced dislocation density.Potentiodynamic polarization tests(PDP)showed a 18%increase in pitting potential and a 76%reduction in corrosion rate after PWHT.The improvement in corrosion resistance is attributed to the increase inΣ3 twin boundaries,which enhance grain boundary stability and reduce susceptibility to localized corrosion.These findings highlight the role of PWHT in refining the microstructure and strengthening corrosion resistance,making HNASS a promising material for demanding applications.展开更多
Copper is a versatile material,commonly utilized in power transmission and electronic devices,but its relative high reactivity necessitates a long-lasting protective technique.Here,we report a method that combines pla...Copper is a versatile material,commonly utilized in power transmission and electronic devices,but its relative high reactivity necessitates a long-lasting protective technique.Here,we report a method that combines plasma-enhanced non-equilibrium magnetron sputtering physical vapor deposition(PEUMS-PVD)and anodization to construct a self-healing three-dimensional Ti/Al-doped TiO_(2)nanotubes/Ti_(3)AlC_(2)coating on the surface of Cu substrates.This novel strategy enhances the corrosion resistance of copper substrates in marine environments,with corrosion current densities of up to 4.5643×10^(−8)A/cm^(2).Among them,the doping of nano-aluminum particles makes the coating self-healing.The mechanistic analysis of the corrosion behaviors during early immersion experiments was conducted using electrochemical noise,and revealed that during the initial stages of coating immersion,uniform corrosion predominates,with a minor occurrence of localized corrosion.展开更多
Al-Mg-Mn-Sc-Zr alloys with excellent weldability have emerged as ideal candidates for aerospace applications.Currently,the investigations on the corrosion behavior of alloys under tungsten inert gas(TIG)welding condit...Al-Mg-Mn-Sc-Zr alloys with excellent weldability have emerged as ideal candidates for aerospace applications.Currently,the investigations on the corrosion behavior of alloys under tungsten inert gas(TIG)welding conditions are insufficient.Here,the stress corrosion cracking(SCC)behavior of base metal(BM)and weld zone(WZ)of TIG welded Al-Mg-Mn-Sc-Zr alloys was investigated by using pre-cracked compact tensile samples immersed in 3.5%NaCl solution.The direct current potential drop(DCPD)method was used to record the crack propagation.The microstructure and fracture morphology of different regions of TIG welded joints were studied by SEM,EBSD and TEM,and the SCC crack propagation mechanism of BM and WZ was analyzed.The results demonstrated that the critical stress intensity factor for stress corrosion cracking(K_(ⅠSCC))of BM and WZ was 7.05 MPa·m_(1/2) and 11.79 MPa·m_(1/2),respectively.Then,the crack propagation rate of BM was faster than that of WZ,and BM was more susceptible to SCC than WZ.Additionally,the fracture mode of the BM mainly exhibited transgranular fracture,while the fracture mode of the WZ mainly exhibited intergranular and transgranular mixed fracture.Moreover,SCC crack propagation was attributed to the combined effect of anodic dissolution and hydrogen embrittlement.This study will provide experimental and theoretical basis for the wide application of TIG welded Al-Mg-Mn-Sc-Zr alloys in aerospace.展开更多
Copper-nickel alloys can suffer severe localized corrosion in marine environments containing sulfate-reducing bacteria(SRB),but the effect of SRB on the under-deposit corrosion of copper-nickel alloys is unknown.In th...Copper-nickel alloys can suffer severe localized corrosion in marine environments containing sulfate-reducing bacteria(SRB),but the effect of SRB on the under-deposit corrosion of copper-nickel alloys is unknown.In this work,the corrosion behavior of B10 copper-nickel alloy beneath a deposit caused by SRB with carbon source starvation in artificial seawater was studied based on electrochemical measurements and surface analysis.Results demonstrate that SRB with an organic carbon starvation can survive in artificial water but most SRB cells have died.The survived SRB cells can attach to the bare and deposit-covered B10 copper-nickel alloy,leading to the corrosion acceleration.Due to the limitation of organic carbon source,the pitting corrosion of B10 copper-nickel alloy caused by SRB is not serious.However,serious pitting corrosion of the deposit-covered B10 copper-nickel alloy can be found both in abiotic and biotic conditions,and the pitting corrosion and uniform corrosion are further accelerated by SRB.There is a galvanic effect between the bare and deposit-covered specimens in the presence of SRB in the early stage but the galvanic effect after 5 d of testing can be neglected due to the low OCP difference values.展开更多
In the present investigation, electroless Ni-Cu-P/n-TiN composite coating was prepared using alkaline citrate-based bath. X-ray diffraction (XRD), scanning electron microscopy(SEM), energy-dispersive spectroscopy...In the present investigation, electroless Ni-Cu-P/n-TiN composite coating was prepared using alkaline citrate-based bath. X-ray diffraction (XRD), scanning electron microscopy(SEM), energy-dispersive spectroscopy(EDS), electrochemical measurements, weight loss tests and Raman spectrometer were used to character the properties of the coating. As the Cu content increased from 7.3 wt% to 24.8 wt%, the corrosion current density of the Ni-Cu-P/n-TiN coating decreased from 10.80 to 4.34 ~tA. And the inclusion of Cu in NiP alloy resulted in refinement and less porosity in microstructure. The addition of TiN resulted in a slight decline in anti-corrosion property of the coating. As the mass loss test showed, Ni-24.8%Cu-P exhibited perfect corrosion resistance. Studies by Raman spectroscopy on coatings proved that Cu(II)3(PO4)(OH)3, Cu(OH)2 and CuO were examined while no compound of nickel was found, and Cu exhibited preferred corrosion in saline solution, providing cathodic protection to Ni alloy.展开更多
The corrosion properties of aluminum-lithium(Al-Li) alloys, which are potential materials used to construct for tanks of liquid rockets or missiles, are essential for safe propellant storage and transport. In order to...The corrosion properties of aluminum-lithium(Al-Li) alloys, which are potential materials used to construct for tanks of liquid rockets or missiles, are essential for safe propellant storage and transport. In order to manifest the corrosion resistance of the 2195 Al-Li alloy in practical propellant tanks filled with N2O4, the alloy was soaked in 30% nitric acid solution, an accelerating corrosion environment, to test its corrosion behavior. Scanning electron microscopy(SEM) and transmission electron microscopy(TEM)were used to characterize microstructure and corrosion morphology of the alloy. Focused ion beam(FIB),combined with SEM, was used to demonstrate localized corrosion features and the propagation of corrosion pathways beneath the alloy surface. It was found that the corrosion network was formed with most intergranular corrosion and sparse intragranular corrosion. Additionally, the distribution and number of intermetallic particles influenced the localized corrosion degree and the direction of corrosion pathways. Aggregated particles made corrosion pathways continuously and caused more severe corrosion. The results from this work were valid and useful to corrosion prevention and protection for storage safety on propellant tanks in N_(2)O_(4).展开更多
Corrosion behaviors of P110 and N80 tubular steels in CO_(2) gas phase and supercritical(S-CO_(2))phase in a saturated water vapor environment were explored in corrosion weight loss experiments by SEM,EDS,XRD,XPS and ...Corrosion behaviors of P110 and N80 tubular steels in CO_(2) gas phase and supercritical(S-CO_(2))phase in a saturated water vapor environment were explored in corrosion weight loss experiments by SEM,EDS,XRD,XPS and cross-section analysis techniques.With the increase in CO_(2) partial pressure,the average corrosion rate increased first and then decreased.The average corrosion rate reached the maximum value under the near-critical pressure.When CO_(2) partial pressure further increased to be above the critical pressure,the average corrosion rate gradually decreased and local aggregation of molecules was weakened.展开更多
This paper studied the influence of aging treatment on the corrosion behavior and mechanism of Mg-Y alloys with different Y content through corrosion mass loss test, electrochemical test and corrosion morphologies obs...This paper studied the influence of aging treatment on the corrosion behavior and mechanism of Mg-Y alloys with different Y content through corrosion mass loss test, electrochemical test and corrosion morphologies observation. Results show that the peak-aging times of Mg-(0.25, 2.5, 5, 8 and 15) Y alloys at 250 ℃ were 4, 6, 10, 12 and 16 h. The aging treatment reduced the corrosion resistance of Mg-Y alloys, and the corrosion resistance of Mg-Y alloys became worse with increasing of the aging time. The change magnitude of the open circuit potentials for Mg-(0.25, 2.5)Y alloys was greater than that of Mg-(5, 8 and 15)-Y alloys. The polarization curves of Mg (0.25, 2.5, 5, 8 and 15) Y alloys had the similar shape after aging treatment, and the slopes of the anodic branch were greater than those of the cathodic branches. After aging treatment, the corrosion modes of Mg-0.25Y and Mg-(2.5, 5, 8 and 15) Y alloys were uniform corrosion and pitting corrosion with small local deep corrosion.展开更多
A new model considering corrosion property for grounding grids diagnosis is proposed,which provides reference solutions of ambiguous branches.The constraint total least square method based on singular value decomposit...A new model considering corrosion property for grounding grids diagnosis is proposed,which provides reference solutions of ambiguous branches.The constraint total least square method based on singular value decomposition is adopted to improve the effectiveness of grounding grids' diagnosis algorithm.The improvement can weaken the influence of the model's error,which results from the differences between design paper and actual grid.Its influence on touch and step voltages caused by the interior resistance of conductors is taken into account.Simulation results show the validity of this approach.展开更多
The influence of chemical composition on corrosion resistance of AZ91D magnesium alloys ingots has been investigated. Mass loss method was applied to evaluate the corrosion resistance of AZ91D alloys and the data were...The influence of chemical composition on corrosion resistance of AZ91D magnesium alloys ingots has been investigated. Mass loss method was applied to evaluate the corrosion resistance of AZ91D alloys and the data were analyzed by multiple regression. The results show that the corrosion resistance of this alloy can be improved by increasing Al, Zn and Mn in a certain degree, and will drop with increasing Si and heavy metals (Fe, Cu, Ni). It is found that ingots received from company F should be listed into unusable materials in terms of the corrosion resistance, while among the five suppliers, the only local company E supplied excellent AZ91D magnesium alloy ingots with the best corrosion resistance.展开更多
Corrosion has always been a difficult problem that troubles and restricts the application and development ofengineering materials.By endowing coatings on metal surfaces with polymer material,it is possible to protect ...Corrosion has always been a difficult problem that troubles and restricts the application and development ofengineering materials.By endowing coatings on metal surfaces with polymer material,it is possible to protect othermaterials from factors including acid and alkali,water vapor,bacteria.Therefore,it is necessary to summarize theresearch progress of polymer materials in the field of pollution and corrosion prevention in recent years.This articlesummarizes four types of polymer materials with good weather resistance:polyurethane(PU),polydimethylsiloxane(PDMS),polyvinylidene fluoride(PVDF),and polyvinylidene chloride(PVDC).These four polymer materials aresuitable for making polymer anti-corrosion or anti-fouling materials and each has its own characteristics.PU can firmlyadhere to various substrates,effectively protecting and extending their lifespan,but the environmentally friendly varietiescurrently used,namely water-borne polyurethanes(WPU),generally have poor mechanical properties.PDMS is nontoxicand has excellent hydrophobicity,but its static anti-fouling ability is insufficient when applied in the field of antifouling.PVDF has good chemical resistance and high mechanical properties,good UV resistance making it suitable foroutdoor use like in the marine environment.However,PVDF lacks flexibility after molding and its manufacturing cost isrelatively high.PVDC has excellent water vapor barrier properties,but poor adhesion to metal material surfaces.Therefore,researchers need to modify these four polymers when using them to solve the problem of corrosion orbiofouling.The article will review the research progress of four types of polymers in recent years from the perspectivesof anti-corrosion,anti-fouling,and a strategy named as self-healing that is beneficial for protecting polymer surfacesfrom mechanical damage,and summarize the modification methods adopted by researchers when applying thesematerials.Finally,a summary of the application and the prospects of these polymer materials are presented.展开更多
基金National Natural Science Foundation of China(12002196,12102140)。
文摘Semiconductors and related fields today hold vast application prospects.The semiconductor wafer fabrication process involves steps such as substrate preparation and epitaxy,which occur in high-temperature corrosive environments.Consequently,components like crucibles,susceptors and wafer carriers require carbon-based materials such as graphite and carbon-carbon composites.However,traditional carbon materials underperform in these extreme conditions,failing to effectively address the challenges.This leads to issues including product contamination and shortened equipment lifespan.Therefore,effective protection of carbon materials is crucial.This paper reviews current research status on the preparation methods and properties of corrosion-resistant coatings within relevant domestic and international fields.Preparation methods include various techniques such as physical vapor deposition(PVD),chemical vapor deposition(CVD)and the sol-gel method.Furthermore,it offers perspectives on future research directions for corrosion-resistant coated components in semiconductor equipment.These include exploring novel coating materials,improving coating preparation processes,enhancing coating corrosion resistance,as well as further investigating the interfacial interactions between coatings and carbon substrates to achieve better adhesion and compatibility.
基金Project(2022QNRC001) supported by the Young Elite Scientists Sponsorship Program by China Association for Science and TechnologyProject supported by the State Key Laboratory of Powder Metallurgy,China。
文摘In this investigation,we examined the high-temperature corrosion behavior of three nickel-based single-crystal superalloys subjected to a mixed molten salt environment of Na_(2)SO_(4)and NaCl at 700℃,leading to a preliminary elucidation of their molten salt corrosion mechanisms.By further comparing the corrosion degree of the three nickel-based single-crystal superalloys combined with the Gibbs free energy calculation of the corrosion products,the influence of alloying elements on the corrosion performance of nickel-based single-crystal superalloys was analyzed.It was established that the corrosion mechanism of these nickel-based single-crystal superalloys predominantly involves a cyclic process of oxide layer formation and decomposition,ultimately resulting in the establishment of a protective layer principally composed of NiO,with a constantly regenerating Al2O3 barrier,impeding further alloy degradation.Furthermore,the inclusion of elements such as Cr,Al,Ta,and notably Re has been found to markedly improve the thermal corrosion resistance of the superalloys.These insights not only enhance our comprehension of the corrosion mechanisms pertinent to nickel-based superalloys,but also provide strategic directions for alloy composition refinement aimed at bolstering their corrosion resilience.
基金supported by the National Natural Science Foundation of China(No.52074130)Engineering Research Center of Resource Utilization of Carbon-containing Waste with Carbon Neutrality,Ministry of Education,200237 Shanghai,PR China.
文摘To advance the understanding of the corrosion behavior of stainless steel bellows in marine atmospheric environments and enhance the precision of service life predictions,this study employs finite element simulations to investigate the pitting corrosion rates and pit morphologies of bellows peaks and troughs under varying electrolyte film thicknesses.The model incorporates localized electrochemical reactions,oxygen concentration,and homogeneous solution reactions.For improved computational accuracy,the fitted polarization curve data were directly applied as nonlinear boundary conditions on the electrode surface via interpolation functions.Simulation results reveal that the peak regions exhibit faster corrosion rates than the trough regions.With increasing electrolyte film thickness(from 10μm to 500μm),corrosion rates at both peaks and troughs decrease progressively,and after 120 hours of simulation,the maximum corrosion rate at the peaks declines from 0.720 mm/a to 0.130 mm/a,and at the troughs from 0.520 mm/a to 0.120 mm/a,with the disparity in corrosion rates diminishing over time.Furthermore,as corrosion progresses,pits propagate deeper into the substrate,exhibiting both vertical penetration and lateral expansion along the passive film interface,ultimately breaching the substrate.This research offers valuable insights into designing corrosion mitigation strategies for stainless steel bellows in marine environments.
文摘Graphene oxide (GO) reduced by Stachys lavandulifolia extract (SLE) was produced and characterised. The anti-corrosion behaviour of epoxy coatings containing GO and rGO nanosheets was investigated. FESEM-EDS, FT-IR, and Raman spectroscopy were used to examine the microstructure and chemical composition of the nanosheets and epoxy coatings. EIS experiment was used to explore the corrosion behaviour of the coatings. The O/C ratio for GO and rGO-SLE was found to be 2.5 and 4.5, indicating a decrease in the carbon content after the reduction of GO, confirming the adsorption of SLE onto the GO nanosheets. The successful reduction of GO in the presence of SLE particles was confirmed by disappearing the C=O peak and a significant decrease in the C-O-C bond intensity. The epoxy/rGO- SLE coatings exhibited the highest double-layer thickness and excellent corrosion resistance compared to neat epoxy and epoxy/GO coatings, emphasizing the significant role of rGO in enhancing the protective performance of epoxy coatings. The highest values for total charge transfer and film resistances and the inhibition efficiency were observed to be 6529 Ω·cm^(2) and 90%, respectively, for the epoxy/rGO-SLE coated steel plate. It was also found that the epoxy/0.15 wt.% rGO-SLE coating demonstrates the best corrosion resistance performance.
基金Projects(82171030,81870678)supported by the National Natural Science Foundation of China。
文摘Magnesium alloys as medical implant materials necessitate a lower and adjustable corrosion rate for clinical applications.The microstructure and corrosion behavior of AZ31Mn-xEr(x=0.1,0.5,1.2)alloys were systematically investigated using optical microscopy(OM),scanning electron microscopy(SEM),and X-ray photoelectron spectroscopy(XPS),combined with Tafel polarization and electrochemical impedance spectroscopy(EIS)analyses.The findings showed that the alloying element Er refined the grain structure during solidification by increasing the nucleation rate and forming a secondary phase of Al_(3)Er with Al.The Er and Mg in the matrix co-oxidize to form a dense MgO/Er_(2)O_(3)composite oxide,preventing the formation of loose magnesium hydroxide/basic magnesium carbonate.The trace alloying element Mn interacts with impurities Fe in the magnesium matrix to form an AlFeMn second phase,reducing micro-galvanic corrosion driving force.Electrochemical testing in a 3.5%NaCl solution demonstrated a marked reduction in corrosion rate from 10.46 mm/a(AZ 31 Mn alloy)to 0.44 mm/a(AZ31Mn-1.2Er alloy).This research offers a reference for searching for corrosion-resistant magnesium alloy and degradable medical magnesium alloy materials.
基金Project(U2067217)supported by the National Natural Science Foundation of ChinaProject(SASTIND)supported by the State Administration of Science,Technology and Industry for National Defense,ChinaProject(2020M683572)supported by China Postdoctoral Science Foundation。
文摘The influence of grain size or grain refinement on the corrosion of Zr alloy is clarified by employing a series of electrochemical analyses and characterization techniques.The corrosion resistance,as a function of exposure time,F−concentration,and solution temperatures,of Zr alloys with different grain sizes is ascertained.The results confirm that refining the grain size can effectively enhance the short-time corrosion properties of Zr alloy in HNO_(3) with F−.The fine grained Zr alloy(~10μm in diameter)consistently exhibits a lower corrosion current density,ranging from 18%to 46%lower than that of the coarse-grained Zr alloy(~44μm).The enhanced corrosion resistance is attributed to the high density grain boundaries,which promote oxide stability,and accelerate the creation of the protective layer.The high corrosion rate and pseudo-passivation behavior of Zr alloys in fluorinated nitric acid originate from the accelerated“dissolution-passivation”of the oxide film.However,the grain refinement does not provide enduring anti-corrosion for Zr alloys.To meet the operation of spent fuel reprocessing,additional systematic efforts are required to evaluate the long term effect of grain refinement.
基金Project(52275350)supported by the National Natural Science Foundation of ChinaProject(0301006)supported by International Cooperative Scientific Research Platform of SUES,China。
文摘It is of great significance to study the corrosion process of aluminum(Al)alloys fasteners in order to mitigate corrosion for their widespread applications.In this paper,a method for enhancing the corrosion resistance of Al alloy fasteners is proposed.7075 Al alloy parts with a fine-grained microstructure were prepared by pre-heat treatment(PHT),combined subsequent equal channel angular pressing(ECAP)and cold upsetting(CU).The corrosion behavior of the specimens was investigated by intergranular corrosion and electrochemical test.Microstructure investigations were carried out by field emission scanning electron microscopy,energy dispersive spectrometer and transmission electron microscopy.The relationship between microstructural evolution and corrosion resistance changes was also explored.The results show that both PHT and ECAP-CU significantly improved the corrosion resistance of the samples and modified the corrosion process.The open circuit potential,corrosion current density and corrosion rate of the alloy on electrochemical test were(-0.812±8.854)×10^(-5) V(vs.SCE),(6.379±0.025)×10^(-6) A/cm^(2) and 0.066 mm/year,respectively,and the intergranular corrosion depth was(557±8)μm.The main factor controlling the corrosion behavior was the microstructure evolution.After PHT,the disappearance of the dendritic structure and the dissolution of the nonequilibrium second phase eliminated the potential difference between the phases,reducing the free energy in the as cast state.When ECAP-CU was used after PHT,the grain refinement was accompanied by a high density of grain boundaries and dislocations,which led to the formation of a denser passivation film on the alloy surface,improving the corrosion resistance in an aggressive environment.
基金Project(51501228)supported by the National Natural Science Foundation of ChinaProject(202109)supported by the Open Sharing Fund for the Large-scale Instruments and Equipments of Central South University,China。
文摘The effects of Yb/Zr micro-alloying on the microstructure,mechanical properties,and corrosion resistance of an Al-Zn-Mg-Cu alloy were systematically investigated.Upon the addition of Yb/Zr to the Al-Zn-Mg-Cu alloy,the grain boundaries were pinned by high-density nanosized Al_(3)(Yb,Zr)precipitates during extrusion deformation,consequently,the average grain size was significantly reduced from 232.7μm to 3.2μm.This grain refinement contributed substantially to the improvement in both strength and elongation.The ultimate tensile strength,yield strength,and elongation of the Yb/Zr modified alloy increased to 705.3 MPa,677.6 MPa,and 8.7%,respectively,representing enhancements of 16.2%,19.3%,and 112.2%compared to the unmodified alloy.Moreover,the distribution of MgZn_(2)phases along grain boundaries became more discontinuous in the Yb/Zr modified alloy,which effectively retarded the propagation of intergranular corrosion and improved the corrosion resistance.
文摘Because of an unfortunate mistake by authors,the Project(5227010679)of Foundation item was wrong.The corrected Project is shown as follows:Project(52271073).
文摘This study examines the effects of friction stir welding(FSW)and post-weld heat treatment(PWHT)on the grain boundary character distribution and corrosion resistance of cross sectional(top and bottom)regions of nickel-and molybdenum-free high-nitrogen austenitic stainless steel(HNASS).FSW at 400 rpm and 30 mm/min resulted in finer grains(4.18μm)and higher coincident site lattice(CSL)boundaries(32.3%)at the top of the stir zone(SZ)due to dynamic recrystallization(DRX).PWHT at 900℃for 1 h led to grain coarsening(12.91μm the bottom SZ)but enhanced CSL boundaries from 24.6%to 30.2%,improving grain boundary stability.PWHT reduced the kernel average misorientation(KAM)by 14.9%in the SZ-top layer and 20.4%in the SZ-bottom layer,accompanied by a 25%decrease in hardness in the SZ-top layer and 26.7%in the SZ-bottom layer,indicating strain recovery and reduced dislocation density.Potentiodynamic polarization tests(PDP)showed a 18%increase in pitting potential and a 76%reduction in corrosion rate after PWHT.The improvement in corrosion resistance is attributed to the increase inΣ3 twin boundaries,which enhance grain boundary stability and reduce susceptibility to localized corrosion.These findings highlight the role of PWHT in refining the microstructure and strengthening corrosion resistance,making HNASS a promising material for demanding applications.
基金Projects(42106051,42006046,U2106206) supported by the National Natural Science Foundation of ChinaProject(22373501D) supported by Hebei Provincial Key R&D Program,China。
文摘Copper is a versatile material,commonly utilized in power transmission and electronic devices,but its relative high reactivity necessitates a long-lasting protective technique.Here,we report a method that combines plasma-enhanced non-equilibrium magnetron sputtering physical vapor deposition(PEUMS-PVD)and anodization to construct a self-healing three-dimensional Ti/Al-doped TiO_(2)nanotubes/Ti_(3)AlC_(2)coating on the surface of Cu substrates.This novel strategy enhances the corrosion resistance of copper substrates in marine environments,with corrosion current densities of up to 4.5643×10^(−8)A/cm^(2).Among them,the doping of nano-aluminum particles makes the coating self-healing.The mechanistic analysis of the corrosion behaviors during early immersion experiments was conducted using electrochemical noise,and revealed that during the initial stages of coating immersion,uniform corrosion predominates,with a minor occurrence of localized corrosion.
基金Project (2023GK1080) supported by the Major Special Projects of Hunan Province of China。
文摘Al-Mg-Mn-Sc-Zr alloys with excellent weldability have emerged as ideal candidates for aerospace applications.Currently,the investigations on the corrosion behavior of alloys under tungsten inert gas(TIG)welding conditions are insufficient.Here,the stress corrosion cracking(SCC)behavior of base metal(BM)and weld zone(WZ)of TIG welded Al-Mg-Mn-Sc-Zr alloys was investigated by using pre-cracked compact tensile samples immersed in 3.5%NaCl solution.The direct current potential drop(DCPD)method was used to record the crack propagation.The microstructure and fracture morphology of different regions of TIG welded joints were studied by SEM,EBSD and TEM,and the SCC crack propagation mechanism of BM and WZ was analyzed.The results demonstrated that the critical stress intensity factor for stress corrosion cracking(K_(ⅠSCC))of BM and WZ was 7.05 MPa·m_(1/2) and 11.79 MPa·m_(1/2),respectively.Then,the crack propagation rate of BM was faster than that of WZ,and BM was more susceptible to SCC than WZ.Additionally,the fracture mode of the BM mainly exhibited transgranular fracture,while the fracture mode of the WZ mainly exhibited intergranular and transgranular mixed fracture.Moreover,SCC crack propagation was attributed to the combined effect of anodic dissolution and hydrogen embrittlement.This study will provide experimental and theoretical basis for the wide application of TIG welded Al-Mg-Mn-Sc-Zr alloys in aerospace.
基金Project(2023A1515012146)supported by the Guangdong Basic and Applied Research Foundation,ChinaProjects(52271083,51901253,52371059,52071091)supported by the National Natural Science Foundation of ChinaProject(2023HA-TYUTKFYF029)supported by the Open Research Fund from the Hai’an&Taiyuan University of Technology Advanced Manufacturing and Intelligent Equipment Industrial Research Institute,China。
文摘Copper-nickel alloys can suffer severe localized corrosion in marine environments containing sulfate-reducing bacteria(SRB),but the effect of SRB on the under-deposit corrosion of copper-nickel alloys is unknown.In this work,the corrosion behavior of B10 copper-nickel alloy beneath a deposit caused by SRB with carbon source starvation in artificial seawater was studied based on electrochemical measurements and surface analysis.Results demonstrate that SRB with an organic carbon starvation can survive in artificial water but most SRB cells have died.The survived SRB cells can attach to the bare and deposit-covered B10 copper-nickel alloy,leading to the corrosion acceleration.Due to the limitation of organic carbon source,the pitting corrosion of B10 copper-nickel alloy caused by SRB is not serious.However,serious pitting corrosion of the deposit-covered B10 copper-nickel alloy can be found both in abiotic and biotic conditions,and the pitting corrosion and uniform corrosion are further accelerated by SRB.There is a galvanic effect between the bare and deposit-covered specimens in the presence of SRB in the early stage but the galvanic effect after 5 d of testing can be neglected due to the low OCP difference values.
基金Project(K1403375-11)supported by Science and Technology Planning Project of Changsha,ChinaProject(2015D009)supported by the Planned Science and Technology Project of Qingyuan City,ChinaProject(2015B04)supported by the Planned Science and Technology Project of Qingcheng District,Qingyuan City,China
文摘In the present investigation, electroless Ni-Cu-P/n-TiN composite coating was prepared using alkaline citrate-based bath. X-ray diffraction (XRD), scanning electron microscopy(SEM), energy-dispersive spectroscopy(EDS), electrochemical measurements, weight loss tests and Raman spectrometer were used to character the properties of the coating. As the Cu content increased from 7.3 wt% to 24.8 wt%, the corrosion current density of the Ni-Cu-P/n-TiN coating decreased from 10.80 to 4.34 ~tA. And the inclusion of Cu in NiP alloy resulted in refinement and less porosity in microstructure. The addition of TiN resulted in a slight decline in anti-corrosion property of the coating. As the mass loss test showed, Ni-24.8%Cu-P exhibited perfect corrosion resistance. Studies by Raman spectroscopy on coatings proved that Cu(II)3(PO4)(OH)3, Cu(OH)2 and CuO were examined while no compound of nickel was found, and Cu exhibited preferred corrosion in saline solution, providing cathodic protection to Ni alloy.
基金National Natural Science Foundation of China (Grant No.52075541)Shaanxi Province Natural Science Foundation (Grant No. 2022JM-243) to provide fund for conducting experiments。
文摘The corrosion properties of aluminum-lithium(Al-Li) alloys, which are potential materials used to construct for tanks of liquid rockets or missiles, are essential for safe propellant storage and transport. In order to manifest the corrosion resistance of the 2195 Al-Li alloy in practical propellant tanks filled with N2O4, the alloy was soaked in 30% nitric acid solution, an accelerating corrosion environment, to test its corrosion behavior. Scanning electron microscopy(SEM) and transmission electron microscopy(TEM)were used to characterize microstructure and corrosion morphology of the alloy. Focused ion beam(FIB),combined with SEM, was used to demonstrate localized corrosion features and the propagation of corrosion pathways beneath the alloy surface. It was found that the corrosion network was formed with most intergranular corrosion and sparse intragranular corrosion. Additionally, the distribution and number of intermetallic particles influenced the localized corrosion degree and the direction of corrosion pathways. Aggregated particles made corrosion pathways continuously and caused more severe corrosion. The results from this work were valid and useful to corrosion prevention and protection for storage safety on propellant tanks in N_(2)O_(4).
基金Project(21JCQN0066)supported by the Youth Science&Technology Foundation of Sichuan Province,China。
文摘Corrosion behaviors of P110 and N80 tubular steels in CO_(2) gas phase and supercritical(S-CO_(2))phase in a saturated water vapor environment were explored in corrosion weight loss experiments by SEM,EDS,XRD,XPS and cross-section analysis techniques.With the increase in CO_(2) partial pressure,the average corrosion rate increased first and then decreased.The average corrosion rate reached the maximum value under the near-critical pressure.When CO_(2) partial pressure further increased to be above the critical pressure,the average corrosion rate gradually decreased and local aggregation of molecules was weakened.
基金Projects(2011BAE22B01,2011BAE22B06)supported by the National Key Technology R&D Program,China
文摘This paper studied the influence of aging treatment on the corrosion behavior and mechanism of Mg-Y alloys with different Y content through corrosion mass loss test, electrochemical test and corrosion morphologies observation. Results show that the peak-aging times of Mg-(0.25, 2.5, 5, 8 and 15) Y alloys at 250 ℃ were 4, 6, 10, 12 and 16 h. The aging treatment reduced the corrosion resistance of Mg-Y alloys, and the corrosion resistance of Mg-Y alloys became worse with increasing of the aging time. The change magnitude of the open circuit potentials for Mg-(0.25, 2.5)Y alloys was greater than that of Mg-(5, 8 and 15)-Y alloys. The polarization curves of Mg (0.25, 2.5, 5, 8 and 15) Y alloys had the similar shape after aging treatment, and the slopes of the anodic branch were greater than those of the cathodic branches. After aging treatment, the corrosion modes of Mg-0.25Y and Mg-(2.5, 5, 8 and 15) Y alloys were uniform corrosion and pitting corrosion with small local deep corrosion.
文摘A new model considering corrosion property for grounding grids diagnosis is proposed,which provides reference solutions of ambiguous branches.The constraint total least square method based on singular value decomposition is adopted to improve the effectiveness of grounding grids' diagnosis algorithm.The improvement can weaken the influence of the model's error,which results from the differences between design paper and actual grid.Its influence on touch and step voltages caused by the interior resistance of conductors is taken into account.Simulation results show the validity of this approach.
文摘The influence of chemical composition on corrosion resistance of AZ91D magnesium alloys ingots has been investigated. Mass loss method was applied to evaluate the corrosion resistance of AZ91D alloys and the data were analyzed by multiple regression. The results show that the corrosion resistance of this alloy can be improved by increasing Al, Zn and Mn in a certain degree, and will drop with increasing Si and heavy metals (Fe, Cu, Ni). It is found that ingots received from company F should be listed into unusable materials in terms of the corrosion resistance, while among the five suppliers, the only local company E supplied excellent AZ91D magnesium alloy ingots with the best corrosion resistance.
基金Project(ZR2022QD001)supported by the Shandong Provincial Natural Science Youth Fund Project,ChinaProject(42306228)supported by the National Natural Science Foundation of ChinaProject(2022CXPT027)supported by the Key R&D Program of Shandong Province,China。
文摘Corrosion has always been a difficult problem that troubles and restricts the application and development ofengineering materials.By endowing coatings on metal surfaces with polymer material,it is possible to protect othermaterials from factors including acid and alkali,water vapor,bacteria.Therefore,it is necessary to summarize theresearch progress of polymer materials in the field of pollution and corrosion prevention in recent years.This articlesummarizes four types of polymer materials with good weather resistance:polyurethane(PU),polydimethylsiloxane(PDMS),polyvinylidene fluoride(PVDF),and polyvinylidene chloride(PVDC).These four polymer materials aresuitable for making polymer anti-corrosion or anti-fouling materials and each has its own characteristics.PU can firmlyadhere to various substrates,effectively protecting and extending their lifespan,but the environmentally friendly varietiescurrently used,namely water-borne polyurethanes(WPU),generally have poor mechanical properties.PDMS is nontoxicand has excellent hydrophobicity,but its static anti-fouling ability is insufficient when applied in the field of antifouling.PVDF has good chemical resistance and high mechanical properties,good UV resistance making it suitable foroutdoor use like in the marine environment.However,PVDF lacks flexibility after molding and its manufacturing cost isrelatively high.PVDC has excellent water vapor barrier properties,but poor adhesion to metal material surfaces.Therefore,researchers need to modify these four polymers when using them to solve the problem of corrosion orbiofouling.The article will review the research progress of four types of polymers in recent years from the perspectivesof anti-corrosion,anti-fouling,and a strategy named as self-healing that is beneficial for protecting polymer surfacesfrom mechanical damage,and summarize the modification methods adopted by researchers when applying thesematerials.Finally,a summary of the application and the prospects of these polymer materials are presented.