This study presents the deep removal of copper (Ⅱ) from the simulated cobalt electrolyte using fabricated polystyrene-supported 2-aminomethylpyridine chelating resin (PS-AMP) in a fixed-bed.The effects of bed height ...This study presents the deep removal of copper (Ⅱ) from the simulated cobalt electrolyte using fabricated polystyrene-supported 2-aminomethylpyridine chelating resin (PS-AMP) in a fixed-bed.The effects of bed height (7.0–14.0 cm),feed flow rate (4.5–9.0 mL/min),initial copper (Ⅱ) concentration of the feed (250–1000 mg/L),feed temperature (25–40 ℃) and the value of pH (2.0–4.0) on the adsorption process of the PS-AMP resin were investigated.The experimental data showed that the PS-AMP resin can deeply eliminate copper (Ⅱ) from the simulated cobalt electrolyte.The bed height,feed flow rate,initial copper (Ⅱ) concentration of the feed,feed temperature and feed pH value which corresponded to the highest removal of copper (Ⅱ) were 7.0 cm with 35 mm of the column diameter,4.5 mL/min,40℃,1000 mg/L and 4.0,respectively.The breakthrough capacity,the saturated capacity of the column and the mass ratio of Cu/Co (g/g) in the saturated resin were correspondingly 16.51 mg/g dry resin,61.72 mg/g dry resin and 37.67 under the optimal experimental conditions.The copper (Ⅱ) breakthrough curves were fitted by the empirical models of Thomas,Yoon-Nelson and Adam-Bohart,respectively.The Thomas model was found to be the most suitable one for predicting how the concentration of copper (Ⅱ) in the effluent changes with the adsorption time.展开更多
The adsorption of Cu(Ⅱ)and Cr(Ⅵ)on diaspore was studied with the help of X-ray diffraction analysis,BET measurement,zeta potential measurement and atomic adsorption spectrometry.The adsorption equilibrium almost rea...The adsorption of Cu(Ⅱ)and Cr(Ⅵ)on diaspore was studied with the help of X-ray diffraction analysis,BET measurement,zeta potential measurement and atomic adsorption spectrometry.The adsorption equilibrium almost reaches within 60 min.The adsorption isotherms of Cu(Ⅱ)and Cr(Ⅵ)could be well described by the Langmuir equation.The adsorption capacities of Cu(Ⅱ)and Cr(Ⅵ)are 1.944 and 1.292 mg/g,respectively.The adsorption percentage of Cr(Ⅱ)increases with the increment of solution pH,but the adsorption percentage of Cr(Ⅵ)decreases.This could be explained by zeta potential theoretical and electrostatic attraction between metal ions and diaspore surface.展开更多
China has accumulated massive fine grained copper mine tailings stocks because of the past mining activities in this area. The tailings contain a variety of heavy metals, and the mass percent of Cu, which is one of th...China has accumulated massive fine grained copper mine tailings stocks because of the past mining activities in this area. The tailings contain a variety of heavy metals, and the mass percent of Cu, which is one of the main contaminants in tailings, is up to 0.2601% (analysis by XRF). The Cu can pollute soil and groundwater by rain leaching in the form of Cu(Ⅱ), furthermore ,the fine grained copper-ore-tailings can contaminant larger area by wind for its small granularity ( < 74 μm). The main cause of weathering of mine tailings is due to oxidative dissolution of sulfides. Microorganisms, such as Acidithiobacillus ferrooxidans, play an important role in weathering. These bacteria attach to exposed to mineral surfaces by excreting extracellular polymers and oxidize the sulfide mineral. Some of these bacteria also oxidize Fe2+ to Fe3+ which can chemically oxidize sulfide minerals. These reactions produce voluminous quantities of acid mine drainage and heavy metals which are harmful to the environment and human healthy. This study aims at finding the weathering effects of A. ferrooxidans to Cu(II) pollution of fine grained copper mine tailings, and our experiment applied indigenous A. ferrooxidans FJ-01 to leach the tailings. The optimum test parameters were obtained using shaking flask experiment and SEM observation under the following experimental conditions: 39 days residence time, pulp density 1%-15% (1%, 5% and 15%), 30℃, 120 rpm, pH between 1-3 and redox potential between 400-650 mV. The test results show that the leaching rate of Cu reached 43.1% when the pulp density was 1% after 33 days and kept invariant till the end of the test. In addition, the leaching rate of Cu will decrease as the increase of pulp density, and the maximum rate of 15% pulp density was only 12.5%. From the SEM, it can be seen that the fine grain of tailings flocculated to conglobation under the action of bacterial leaching.展开更多
基金Project(2014CB643401)supported by the National Basic Research Program of ChinaProjects(51134007,51474256)supported by the National Natural Science Foundation of ChinaProject(2017TP1001)supported by the Hunan Provincial Science and Technology Plan Project,China
文摘This study presents the deep removal of copper (Ⅱ) from the simulated cobalt electrolyte using fabricated polystyrene-supported 2-aminomethylpyridine chelating resin (PS-AMP) in a fixed-bed.The effects of bed height (7.0–14.0 cm),feed flow rate (4.5–9.0 mL/min),initial copper (Ⅱ) concentration of the feed (250–1000 mg/L),feed temperature (25–40 ℃) and the value of pH (2.0–4.0) on the adsorption process of the PS-AMP resin were investigated.The experimental data showed that the PS-AMP resin can deeply eliminate copper (Ⅱ) from the simulated cobalt electrolyte.The bed height,feed flow rate,initial copper (Ⅱ) concentration of the feed,feed temperature and feed pH value which corresponded to the highest removal of copper (Ⅱ) were 7.0 cm with 35 mm of the column diameter,4.5 mL/min,40℃,1000 mg/L and 4.0,respectively.The breakthrough capacity,the saturated capacity of the column and the mass ratio of Cu/Co (g/g) in the saturated resin were correspondingly 16.51 mg/g dry resin,61.72 mg/g dry resin and 37.67 under the optimal experimental conditions.The copper (Ⅱ) breakthrough curves were fitted by the empirical models of Thomas,Yoon-Nelson and Adam-Bohart,respectively.The Thomas model was found to be the most suitable one for predicting how the concentration of copper (Ⅱ) in the effluent changes with the adsorption time.
基金Project(2005CB623701)supported by the Major State Basic Research Development Program of China
文摘The adsorption of Cu(Ⅱ)and Cr(Ⅵ)on diaspore was studied with the help of X-ray diffraction analysis,BET measurement,zeta potential measurement and atomic adsorption spectrometry.The adsorption equilibrium almost reaches within 60 min.The adsorption isotherms of Cu(Ⅱ)and Cr(Ⅵ)could be well described by the Langmuir equation.The adsorption capacities of Cu(Ⅱ)and Cr(Ⅵ)are 1.944 and 1.292 mg/g,respectively.The adsorption percentage of Cr(Ⅱ)increases with the increment of solution pH,but the adsorption percentage of Cr(Ⅵ)decreases.This could be explained by zeta potential theoretical and electrostatic attraction between metal ions and diaspore surface.
文摘China has accumulated massive fine grained copper mine tailings stocks because of the past mining activities in this area. The tailings contain a variety of heavy metals, and the mass percent of Cu, which is one of the main contaminants in tailings, is up to 0.2601% (analysis by XRF). The Cu can pollute soil and groundwater by rain leaching in the form of Cu(Ⅱ), furthermore ,the fine grained copper-ore-tailings can contaminant larger area by wind for its small granularity ( < 74 μm). The main cause of weathering of mine tailings is due to oxidative dissolution of sulfides. Microorganisms, such as Acidithiobacillus ferrooxidans, play an important role in weathering. These bacteria attach to exposed to mineral surfaces by excreting extracellular polymers and oxidize the sulfide mineral. Some of these bacteria also oxidize Fe2+ to Fe3+ which can chemically oxidize sulfide minerals. These reactions produce voluminous quantities of acid mine drainage and heavy metals which are harmful to the environment and human healthy. This study aims at finding the weathering effects of A. ferrooxidans to Cu(II) pollution of fine grained copper mine tailings, and our experiment applied indigenous A. ferrooxidans FJ-01 to leach the tailings. The optimum test parameters were obtained using shaking flask experiment and SEM observation under the following experimental conditions: 39 days residence time, pulp density 1%-15% (1%, 5% and 15%), 30℃, 120 rpm, pH between 1-3 and redox potential between 400-650 mV. The test results show that the leaching rate of Cu reached 43.1% when the pulp density was 1% after 33 days and kept invariant till the end of the test. In addition, the leaching rate of Cu will decrease as the increase of pulp density, and the maximum rate of 15% pulp density was only 12.5%. From the SEM, it can be seen that the fine grain of tailings flocculated to conglobation under the action of bacterial leaching.