A cooperative navigation algorithm for a group of autonomous underwater vehicles is proposed on the basis of motion radius vector estimation.Combined the dead reckoning data with the mutual range data through an acous...A cooperative navigation algorithm for a group of autonomous underwater vehicles is proposed on the basis of motion radius vector estimation.Combined the dead reckoning data with the mutual range data through an acoustic communication network among the group members, the relative positioning problem can be solved. A novel approach for solving the relative positioning is presented by using a recursive trigonometry technique and extended Kalman filter(EKF). Simulation results verify the correctness and effectiveness of this navigation method.展开更多
This paper presents a bio-inspired geomagnetic navigation method for autonomous underwater vehicle(AUV) without using any a priori geomagnetic information. Firstly, the multi-objective search problem is raised. Second...This paper presents a bio-inspired geomagnetic navigation method for autonomous underwater vehicle(AUV) without using any a priori geomagnetic information. Firstly, the multi-objective search problem is raised. Secondly, the geomagnetic navigation model is established by constructing a cost function. Then, by taking into consideration the biological magneto-taxis movement behavior for the geomagnetic environment stimulus, the multiobjective evolutionary search algorithm is derived to describe the search process. Finally, compared to the state-of-the-art, the proposed method presents better robustness. The simulation results demonstrate the reliability and feasibility of the proposed method.展开更多
For low-speed underwater vehicles, the ocean currents has a great influence on them, and the changes in ocean currents is complex and continuous, thus whose impact must be taken into consideration in the path planning...For low-speed underwater vehicles, the ocean currents has a great influence on them, and the changes in ocean currents is complex and continuous, thus whose impact must be taken into consideration in the path planning. There are still lack of authoritative indicator and method for the cooperating path planning. The calculation of the voyage time is a difficult problem in the time-varying ocean, for the existing methods of the cooperating path planning, the computation time will increase exponentially as the autonomous underwater vehicle(AUV) counts increase, rendering them unfeasible. A collaborative path planning method is presehted for multi-AUV under the influence of time-varying ocean currents based on the dynamic programming algorithm. Each AUV cooperates with the one who has the longest estimated time of sailing, enabling the arrays of AUV to get their common goal in the shortest time with minimum timedifference. At the same time, they could avoid the obstacles along the way to the target. Simulation results show that the proposed method has a promising applicability.展开更多
基金Sponsored by National Natural Foundation (50979093)the High Technology Research and Development Program of China (863 Program)( 2007AA809502C)Program for New Century Excellent Talents in University (NCET-06-0877)
文摘A cooperative navigation algorithm for a group of autonomous underwater vehicles is proposed on the basis of motion radius vector estimation.Combined the dead reckoning data with the mutual range data through an acoustic communication network among the group members, the relative positioning problem can be solved. A novel approach for solving the relative positioning is presented by using a recursive trigonometry technique and extended Kalman filter(EKF). Simulation results verify the correctness and effectiveness of this navigation method.
基金Supported by National High Technology Research and Development Program of China (863 Program) (2007AA809502C) National Natural Science Foundation of China (50979093) Program for New Century Excellent Talents in University (NCET-06-0877)
基金supported by the National Natural Science Foundation of China(5137917651179156)
文摘This paper presents a bio-inspired geomagnetic navigation method for autonomous underwater vehicle(AUV) without using any a priori geomagnetic information. Firstly, the multi-objective search problem is raised. Secondly, the geomagnetic navigation model is established by constructing a cost function. Then, by taking into consideration the biological magneto-taxis movement behavior for the geomagnetic environment stimulus, the multiobjective evolutionary search algorithm is derived to describe the search process. Finally, compared to the state-of-the-art, the proposed method presents better robustness. The simulation results demonstrate the reliability and feasibility of the proposed method.
基金supported by the National Natural Science Foundation of China(5110917951179156+2 种基金5137917661473233)the Natural Science Basic Research Plan in Shaanxi Province of China(2014JQ8330)
文摘For low-speed underwater vehicles, the ocean currents has a great influence on them, and the changes in ocean currents is complex and continuous, thus whose impact must be taken into consideration in the path planning. There are still lack of authoritative indicator and method for the cooperating path planning. The calculation of the voyage time is a difficult problem in the time-varying ocean, for the existing methods of the cooperating path planning, the computation time will increase exponentially as the autonomous underwater vehicle(AUV) counts increase, rendering them unfeasible. A collaborative path planning method is presehted for multi-AUV under the influence of time-varying ocean currents based on the dynamic programming algorithm. Each AUV cooperates with the one who has the longest estimated time of sailing, enabling the arrays of AUV to get their common goal in the shortest time with minimum timedifference. At the same time, they could avoid the obstacles along the way to the target. Simulation results show that the proposed method has a promising applicability.