Combining the heuristic algorithm (HA) developed based on the specific knowledge of the cooperative multiple target attack (CMTA) tactics and the particle swarm optimization (PSO), a heuristic particle swarm opt...Combining the heuristic algorithm (HA) developed based on the specific knowledge of the cooperative multiple target attack (CMTA) tactics and the particle swarm optimization (PSO), a heuristic particle swarm optimization (HPSO) algorithm is proposed to solve the decision-making (DM) problem. HA facilitates to search the local optimum in the neighborhood of a solution, while the PSO algorithm tends to explore the search space for possible solutions. Combining the advantages of HA and PSO, HPSO algorithms can find out the global optimum quickly and efficiently. It obtains the DM solution by seeking for the optimal assignment of missiles of friendly fighter aircrafts (FAs) to hostile FAs. Simulation results show that the proposed algorithm is superior to the general PSO algorithm and two GA based algorithms in searching for the best solution to the DM problem.展开更多
This paper introduces the quantum control of Lyapunov functions based on the state distance, the mean of imaginary quantities and state errors.In this paper, the specific control laws under the three forms are given.S...This paper introduces the quantum control of Lyapunov functions based on the state distance, the mean of imaginary quantities and state errors.In this paper, the specific control laws under the three forms are given.Stability is analyzed by the La Salle invariance principle and the numerical simulation is carried out in a 2D test system.The calculation process for the Lyapunov function is based on a combination of the average of virtual mechanical quantities, the particle swarm algorithm and a simulated annealing algorithm.Finally, a unified form of the control laws under the three forms is given.展开更多
文摘Combining the heuristic algorithm (HA) developed based on the specific knowledge of the cooperative multiple target attack (CMTA) tactics and the particle swarm optimization (PSO), a heuristic particle swarm optimization (HPSO) algorithm is proposed to solve the decision-making (DM) problem. HA facilitates to search the local optimum in the neighborhood of a solution, while the PSO algorithm tends to explore the search space for possible solutions. Combining the advantages of HA and PSO, HPSO algorithms can find out the global optimum quickly and efficiently. It obtains the DM solution by seeking for the optimal assignment of missiles of friendly fighter aircrafts (FAs) to hostile FAs. Simulation results show that the proposed algorithm is superior to the general PSO algorithm and two GA based algorithms in searching for the best solution to the DM problem.
基金Project supported by the National Natural Science Foundation of China (Grant No.62176140)。
文摘This paper introduces the quantum control of Lyapunov functions based on the state distance, the mean of imaginary quantities and state errors.In this paper, the specific control laws under the three forms are given.Stability is analyzed by the La Salle invariance principle and the numerical simulation is carried out in a 2D test system.The calculation process for the Lyapunov function is based on a combination of the average of virtual mechanical quantities, the particle swarm algorithm and a simulated annealing algorithm.Finally, a unified form of the control laws under the three forms is given.