KD(D&K) (Synthesized Knowledge Discovery System based on Database and KnowledgeBase Cooperating Mechanism) is first advanced in this paper on the basis of KDD (KnowledgeDiscovery System based on Database) and KDK ...KD(D&K) (Synthesized Knowledge Discovery System based on Database and KnowledgeBase Cooperating Mechanism) is first advanced in this paper on the basis of KDD (KnowledgeDiscovery System based on Database) and KDK (Knowledge Discovery System based on KnowledgeBase). KD (D&K) is not simple addition of KDD and KDK but a new system with absolutelynew character and essential development, which is distinct from KDD and KDK and includes them.Not only the generalized structural frame of control rules KD (D&K) acquiring method is proposed,but also the theoretical basis of its key technical problem--don ble-bases cooperating mechanism isdiscussed according to the original academic idea to restrict KDD by basic knowledge base.展开更多
On the basis of KDD(Knowledge Discovery based on Database), this paper proposesthe general framework of open KDD system, discusses its theoretical foundation and realization of technology of its key technology-double ...On the basis of KDD(Knowledge Discovery based on Database), this paper proposesthe general framework of open KDD system, discusses its theoretical foundation and realization of technology of its key technology-double base cooperating mechanism, and especially introduces themining method of cause-and-effect rule. The result of initial illustration shows that the structure ofKDD is effective and available.展开更多
When the maneuverability of a pursuer is not significantly higher than that of an evader,it will be difficult to intercept the evader with only one pursuer.Therefore,this article adopts a two-to-one differential game ...When the maneuverability of a pursuer is not significantly higher than that of an evader,it will be difficult to intercept the evader with only one pursuer.Therefore,this article adopts a two-to-one differential game strategy,the game of kind is generally considered to be angle-optimized,which allows unlimited turns,but these practices do not take into account the effect of acceleration,which does not correspond to the actual situation,thus,based on the angle-optimized,the acceleration optimization and the acceleration upper bound constraint are added into the game for consideration.A two-to-one differential game problem is proposed in the three-dimensional space,and an improved multi-objective grey wolf optimization(IMOGWO)algorithm is proposed to solve the optimal game point of this problem.With the equations that describe the relative motions between the pursuers and the evader in the three-dimensional space,a multi-objective function with constraints is given as the performance index to design an optimal strategy for the differential game.Then the optimal game point is solved by using the IMOGWO algorithm.It is proved based on Markov chains that with the IMOGWO,the Pareto solution set is the solution of the differential game.Finally,it is verified through simulations that the pursuers can capture the escapee,and via comparative experiments,it is shown that the IMOGWO algorithm performs well in terms of running time and memory usage.展开更多
The ability to control the preparation of one-dimensional(1D)porous carbon nanorods,especially during rapid polymerization,is key to their practical application.We report a method for synthesizing 1D porous carbon nan...The ability to control the preparation of one-dimensional(1D)porous carbon nanorods,especially during rapid polymerization,is key to their practical application.We report a method for synthesizing 1D porous carbon nanorods,characterized by the formation of rod-like mi-celles that are assembled from sodium palmitate and Pluronic F127,facilitated by protonated melamine,and subsequently converted into melamine-based N-doped polymer nanorods which were carbonized to produce the corres-ponding N-doped carbon nanorods.The specific capacitance of the supercapacitor used the as-pre-pared N-doped nanorods as electrode material in a three-electrode system was calculated to be 301.66 F g^(-1) at a current density of 0.2 A g^(-1),with an ultra-high specific surface area normalized capacitance of up to 67.07μF cm^(-2).The N-doping and their one-dimensionality give the nanorods a low internal resistance and good stability,making them well suited for fundamental studies and practical applications ranging from materials chemistry to electrochemical energy storage.展开更多
System upgrades in unmanned systems have made Unmanned Aerial Vehicle(UAV)-based patrolling and monitoring a preferred solution for ocean surveillance.However,dynamic environments and large-scale deployments pose sign...System upgrades in unmanned systems have made Unmanned Aerial Vehicle(UAV)-based patrolling and monitoring a preferred solution for ocean surveillance.However,dynamic environments and large-scale deployments pose significant challenges for efficient decision-making,necessitating a modular multiagent control system.Deep Reinforcement Learning(DRL)and Decision Tree(DT)have been utilized for these complex decision-making tasks,but each has its limitations:DRL is highly adaptive but lacks interpretability,while DT is inherently interpretable but has limited adaptability.To overcome these challenges,we propose the Adaptive Interpretable Decision Tree(AIDT),an evolutionary-based algorithm that is both adaptable to diverse environmental settings and highly interpretable in its decision-making processes.We first construct a Markov decision process(MDP)-based simulation environment using the Cooperative Submarine Search task as a representative scenario for training and testing the proposed method.Specifically,we use the heat map as a state variable to address the issue of multi-agent input state proliferation.Next,we introduce the curiosity-guiding intrinsic reward to encourage comprehensive exploration and enhance algorithm performance.Additionally,we incorporate decision tree size as an influence factor in the adaptation process to balance task completion with computational efficiency.To further improve the generalization capability of the decision tree,we apply a normalization method to ensure consistent processing of input states.Finally,we validate the proposed algorithm in different environmental settings,and the results demonstrate both its adaptability and interpretability.展开更多
When performing tasks,unmanned clusters often face a variety of strategy choices.One of the key issues in unmanned cluster tasks is the method through which to design autonomous collaboration and cooperative evolution...When performing tasks,unmanned clusters often face a variety of strategy choices.One of the key issues in unmanned cluster tasks is the method through which to design autonomous collaboration and cooperative evolution mechanisms that allow for unmanned clusters to maximize their overall task effective-ness under the condition of strategic diversity.This paper ana-lyzes these task requirements from three perspectives:the diver-sity of the decision space,information network construction,and the autonomous collaboration mechanism.Then,this paper pro-poses a method for solving the problem of strategy selection diversity under two network structures.Next,this paper presents a Moran-rule-based evolution dynamics model for unmanned cluster strategies and a vision-driven-mechanism-based evolu-tion dynamics model for unmanned cluster strategy in the con-text of strategy selection diversity according to various unmanned cluster application scenarios.Finally,this paper pro-vides a simulation analysis of the effects of relevant parameters such as the payoff factor and cluster size on cooperative evolu-tion in autonomous cluster collaboration for the two types of models.On this basis,this paper presents advice for effectively addressing diverse choices in unmanned cluster tasks,thereby providing decision support for practical applications of unmanned cluster tasks.展开更多
This paper presents a fixed-time cooperative gui-dance method with impact angle constraints for multiple flight vehicles (MFV) to address the challenges of intercepting large maneuvering targets with difficulty and lo...This paper presents a fixed-time cooperative gui-dance method with impact angle constraints for multiple flight vehicles (MFV) to address the challenges of intercepting large maneuvering targets with difficulty and low precision. A coopera-tive guidance model is proposed, transforming the cooperative interception problem into a consensus problem based on the remaining flight time of the flight vehicles. First, the impact angle constraint is converted into the line of sight (LOS) angle con-straint, and a new fixed-time convergent non-singular terminal sliding surface is introduced, which resolves the singularity issue of the traditional sliding surfaces. With this approach, LOS angle rate and normal overloads can converge in fixed time, ensuring that the upper bound of the system convergence time is not affected by the initial value of the system. Furthermore, the maneuvering movement of the target is considered as a system disturbance, and an extended state observer is employed to estimate and compensate for it in the guidance law. Lastly, by applying consensus theory and distributed communication topology, the remaining flight time of each flight vehicle is syn-chronized to ensure that they intercept the target simulta-neously with different impact angles. Simulation experiments are conducted to validate the effectiveness of the proposed cooper-ative interception and guidance method.展开更多
A situation maintenance-based cooperative guidance strategy is proposed to intercept a high-speed and high-maneuverability target via inferior missiles.Reachability and relative motion analyses are conducted to develo...A situation maintenance-based cooperative guidance strategy is proposed to intercept a high-speed and high-maneuverability target via inferior missiles.Reachability and relative motion analyses are conducted to develop and pursue virtual targets,respectively.A two-stage guidance strategy under nonlinear kinematics is developed on the basis of virtual targets.The first stage optimizes the coverage and collision situation by pursuing virtual targets under specific angular constraints.The second stage subsequently intercepts the superior target based on the handover condition optimized by the first stage.Numerical simulation results are provided to compare the effectiveness and superiority of the proposed strategy with those of the reachability-based cooperative strategy(RCS),coverage-based cooperative guidance(CBCG)and augmented proportional navigation(APN)under various maneuvering modes.展开更多
This paper presents a mode-switching collaborative defense strategy for spacecraft pursuit-evasiondefense scenarios.In these scenarios,the pursuer tries to avoid the defender while capturing the evader,while the evade...This paper presents a mode-switching collaborative defense strategy for spacecraft pursuit-evasiondefense scenarios.In these scenarios,the pursuer tries to avoid the defender while capturing the evader,while the evader and defender form an alliance to prevent the pursuer from achieving its goal.First,the behavioral modes of the pursuer,including attack and avoidance modes,were established using differential game theory.These modes are then recognized by an interactive multiple model-matching algorithm(IMM),that uses several smooth variable structure filters to match the modes of the pursuer and update their probabilities in real time.Based on the linear-quadratic optimization theory,combined with the results of strategy identification,a two-way cooperative optimal strategy for the defender and evader is proposed,where the evader aids the defender to intercept the pursuer by performing luring maneuvers.Simulation results show that the interactive multi-model algorithm based on several smooth variable structure filters perform well in the strategy identification of the pursuer,and the cooperative defense strategy based on strategy identification has good interception performance when facing pursuers,who are able to flexibly adjust their game objectives.展开更多
This paper proposes a distributed event-triggered control(ETC)framework to address cooperative target fencing challenges in UAV swarm.The proposed architecture eliminates the reliance on preset formation parameters wh...This paper proposes a distributed event-triggered control(ETC)framework to address cooperative target fencing challenges in UAV swarm.The proposed architecture eliminates the reliance on preset formation parameters while achieving multi-objective cooperative control for target fencing,network connectivity preservation,collision avoidance,and communication efficiency optimization.Firstly,a differential state observer is constructed to obtain the target's unmeasurable states.Secondly,leveraging swarm selforganization principles,a geometric-constraint-free distributed fencing controller is designed by integrating potential field methods with consensus theory.The controller dynamically adjusts inter-UAV distances via single potential function,enabling coordinated optimization of persistent network connectivity and collision-free motion during target fencing.Thirdly,a dual-threshold ETC mechanism based on velocity consensus deviation and fencing error is proposed,which can be triggered based on task features to dynamically adjust the communication frequency,significantly reduce the communication burden and exclude Zeno behavior.Theoretical analysis demonstrates the stability of closed-loop systems.Multi-scenario simulations show that the proposed method can achieve robust fencing under target maneuverability,partial UAV failures,and communication disturbances.展开更多
Combat effectiveness of unmanned aerial vehicle(UAV)formations can be severely affected by the mission execution reliability.During the practical execution phase,there are inevitable risks where UAVs being destroyed o...Combat effectiveness of unmanned aerial vehicle(UAV)formations can be severely affected by the mission execution reliability.During the practical execution phase,there are inevitable risks where UAVs being destroyed or targets failed to be executed.To improve the mission reliability,a resilient mission planning framework integrates task pre-and re-assignment modules is developed in this paper.In the task pre-assignment phase,to guarantee the mission reliability,probability constraints regarding the minimum mission success rate are imposed to establish a multi-objective optimization model.And an improved genetic algorithm with the multi-population mechanism and specifically designed evolutionary operators is used for efficient solution.As in the task-reassignment phase,possible trigger events are first analyzed.A real-time contract net protocol-based algorithm is then proposed to address the corresponding emergency scenario.And the dual objective used in the former phase is adapted into a single objective to keep a consistent combat intention.Three cases of different scales demonstrate that the two modules cooperate well with each other.On the one hand,the pre-assignment module can generate high-reliability mission schedules as an elaborate mathematical model is introduced.On the other hand,the re-assignment module can efficiently respond to various emergencies and adjust the original schedule within a millisecond.The corresponding animation is accessible at bilibili.com/video/BV12t421w7EE for better illustration.展开更多
To solve the problem of providing the best initial situation for terminal guidance when multiple missiles intercept multiple targets,a group cooperative midcourse guidance law(GCMGL)considering time-to-go is proposed....To solve the problem of providing the best initial situation for terminal guidance when multiple missiles intercept multiple targets,a group cooperative midcourse guidance law(GCMGL)considering time-to-go is proposed.Firstly,a threedimensional(3D)guidance model is established and a cooperative trajectory shaping guidance law is given.Secondly,for estimating the unknown target maneuvering acceleration,an adaptive disturbance observer(ADO)is designed,combining finitetime theory with a radial basis function(RBF)neural network,and the convergence of the estimation error is proven using Lyapunov stability theory.Then,to ensure time-to-go cooperation among missiles within the same group and across different groups,the group consensus protocols of virtual collision point mean and the inter-group cooperative consensus protocol are designed respectively.Based on the group consensus protocols,the virtual collision point cooperative guidance law is given,and the finite-time convergence is proved by Lyapunov stability theory.Simultaneously,combined with trajectory shaping guidance law,virtual collision point cooperative guidance law and the intergroup cooperative consensus protocol,the design of GCMGL considering time-to-go is given.Finally,numerical simulation results show the effectiveness and the superiority of the proposed GCMGL.展开更多
The multi-target assignment(MTA)problem,a crucial challenge in command control,mission planning,and a fundamental research focus in military operations,has garnered significant attention over the years.Extensively stu...The multi-target assignment(MTA)problem,a crucial challenge in command control,mission planning,and a fundamental research focus in military operations,has garnered significant attention over the years.Extensively studied across various domains such as land,sea,air,space,and electronics,the MTA problem has led to the emergence of numerous models and algorithms.To delve deeper into this field,this paper starts by conducting a bibliometric analysis on 463 Scopus database papers using CiteSpace software.The analysis includes examining keyword clustering,co-occurrence,and burst,with visual representations of the results.Following this,the paper provides an overview of current classification and modeling techniques for addressing the MTA problem,distinguishing between static multi-target assignment(SMTA)and dynamic multi-target assignment(DMTA).Subsequently,existing solution algorithms for the MTA problem are reviewed,generally falling into three categories:exact algorithms,heuristic algorithms,and machine learning algorithms.Finally,a development framework is proposed based on the"HIGH"model(high-speed,integrated,great,harmonious)to guide future research and intelligent weapon system development concerning the MTA problem.This framework emphasizes application scenarios,modeling mechanisms,solution algorithms,and system efficiency to offer a roadmap for future exploration in this area.展开更多
In the realm of missile defense systems,the self-sufficient maneuver capacity of missile swarms is pivotal for their survival.Through the analysis of the missile dynamics model,a time-efficient cooperative attack stra...In the realm of missile defense systems,the self-sufficient maneuver capacity of missile swarms is pivotal for their survival.Through the analysis of the missile dynamics model,a time-efficient cooperative attack strategy for missile swarm is proposed.Based on the distribution of the attackers and defenders,the collision avoidance against the defenders is considered during the attack process.By analyzing the geometric relationship between the relative velocity vector and relative position vector of the attackers and defenders,the collision avoidance constrains of attacking swarm are redefined.The key point is on adjusting the relative velocity vectors to fall outside the collision cone.This work facilitates high-precision attack toward the target while keeping safe missing distance between other attackers during collision avoidance process.By leveraging an innovative repulsion artificial function,a time-efficient cooperative attack strategy for missile swarm is obtained.Through rigorous simulation,the effectiveness of this cooperative attack strategy is substantiated.Furthermore,by employing Monte Carlo simulation,the success rate of the cooperative attack strategy is assessesed and the optimal configuration for the missile swarm is deduced.展开更多
Unmanned aerial vehicles(UAVs)have become crucial tools in moving target tracking due to their agility and ability to operate in complex,dynamic environments.UAVs must meet several requirements to achieve stable track...Unmanned aerial vehicles(UAVs)have become crucial tools in moving target tracking due to their agility and ability to operate in complex,dynamic environments.UAVs must meet several requirements to achieve stable tracking,including maintaining continuous target visibility amidst occlusions,ensuring flight safety,and achieving smooth trajectory planning.This paper reviews the latest advancements in UAV-based target tracking,highlighting information prediction,tracking strategies,and swarm cooperation.To address challenges including target visibility and occlusion,real-time prediction and tracking in dynamic environments,flight safety and coordination,resource management and energy efficiency,the paper identifies future research directions aimed at improving the performance,reliability,and scalability of UAV tracking system.展开更多
How multi-unmanned aerial vehicles(UAVs)carrying a payload pass an obstacle-dense environment is practically important.Up to now,there have been few results on safe motion planning for the multi-UAVs cooperative trans...How multi-unmanned aerial vehicles(UAVs)carrying a payload pass an obstacle-dense environment is practically important.Up to now,there have been few results on safe motion planning for the multi-UAVs cooperative transportation system(CTS)to pass through such an environment.The prob-lem is challenging because it is difficult to analyze and explicitly take into account the swing motion of the payload in planning.In this paper,a modeling method of virtual tube is proposed by fus-ing the advantages of the existing modeling algorithm for regu-lar virtual tube and the expansion environment method.The pro-posed method can not only generate a safe and smooth tube for UAVs,but also ensure the payload stays away from the dense obstacles.Simulation results show the effectiveness of the method and the safety of the planned tube.展开更多
Complex multi-area collaborative coverage path planning in dynamic environments poses a significant challenge for multi-fixed-wing UAVs(multi-UAV).This study establishes a comprehensive framework that incorporates UAV...Complex multi-area collaborative coverage path planning in dynamic environments poses a significant challenge for multi-fixed-wing UAVs(multi-UAV).This study establishes a comprehensive framework that incorporates UAV capabilities,terrain,complex areas,and mission dynamics.A novel dynamic collaborative path planning algorithm is introduced,designed to ensure complete coverage of designated areas.This algorithm meticulously optimizes the operation,entry,and transition paths for each UAV,while also establishing evaluation metrics to refine coverage sequences for each area.Additionally,a three-dimensional path is computed utilizing an altitude descent method,effectively integrating twodimensional coverage paths with altitude constraints.The efficacy of the proposed approach is validated through digital simulations and mixed-reality semi-physical experiments across a variety of dynamic scenarios,including both single-area and multi-area coverage by multi-UAV.Results show that the coverage paths generated by this method significantly reduce both computation time and path length,providing a reliable solution for dynamic multi-UAV mission planning in semi-physical environments.展开更多
文摘KD(D&K) (Synthesized Knowledge Discovery System based on Database and KnowledgeBase Cooperating Mechanism) is first advanced in this paper on the basis of KDD (KnowledgeDiscovery System based on Database) and KDK (Knowledge Discovery System based on KnowledgeBase). KD (D&K) is not simple addition of KDD and KDK but a new system with absolutelynew character and essential development, which is distinct from KDD and KDK and includes them.Not only the generalized structural frame of control rules KD (D&K) acquiring method is proposed,but also the theoretical basis of its key technical problem--don ble-bases cooperating mechanism isdiscussed according to the original academic idea to restrict KDD by basic knowledge base.
文摘On the basis of KDD(Knowledge Discovery based on Database), this paper proposesthe general framework of open KDD system, discusses its theoretical foundation and realization of technology of its key technology-double base cooperating mechanism, and especially introduces themining method of cause-and-effect rule. The result of initial illustration shows that the structure ofKDD is effective and available.
基金National Natural Science Foundation of China(NSFC61773142,NSFC62303136)。
文摘When the maneuverability of a pursuer is not significantly higher than that of an evader,it will be difficult to intercept the evader with only one pursuer.Therefore,this article adopts a two-to-one differential game strategy,the game of kind is generally considered to be angle-optimized,which allows unlimited turns,but these practices do not take into account the effect of acceleration,which does not correspond to the actual situation,thus,based on the angle-optimized,the acceleration optimization and the acceleration upper bound constraint are added into the game for consideration.A two-to-one differential game problem is proposed in the three-dimensional space,and an improved multi-objective grey wolf optimization(IMOGWO)algorithm is proposed to solve the optimal game point of this problem.With the equations that describe the relative motions between the pursuers and the evader in the three-dimensional space,a multi-objective function with constraints is given as the performance index to design an optimal strategy for the differential game.Then the optimal game point is solved by using the IMOGWO algorithm.It is proved based on Markov chains that with the IMOGWO,the Pareto solution set is the solution of the differential game.Finally,it is verified through simulations that the pursuers can capture the escapee,and via comparative experiments,it is shown that the IMOGWO algorithm performs well in terms of running time and memory usage.
文摘The ability to control the preparation of one-dimensional(1D)porous carbon nanorods,especially during rapid polymerization,is key to their practical application.We report a method for synthesizing 1D porous carbon nanorods,characterized by the formation of rod-like mi-celles that are assembled from sodium palmitate and Pluronic F127,facilitated by protonated melamine,and subsequently converted into melamine-based N-doped polymer nanorods which were carbonized to produce the corres-ponding N-doped carbon nanorods.The specific capacitance of the supercapacitor used the as-pre-pared N-doped nanorods as electrode material in a three-electrode system was calculated to be 301.66 F g^(-1) at a current density of 0.2 A g^(-1),with an ultra-high specific surface area normalized capacitance of up to 67.07μF cm^(-2).The N-doping and their one-dimensionality give the nanorods a low internal resistance and good stability,making them well suited for fundamental studies and practical applications ranging from materials chemistry to electrochemical energy storage.
文摘System upgrades in unmanned systems have made Unmanned Aerial Vehicle(UAV)-based patrolling and monitoring a preferred solution for ocean surveillance.However,dynamic environments and large-scale deployments pose significant challenges for efficient decision-making,necessitating a modular multiagent control system.Deep Reinforcement Learning(DRL)and Decision Tree(DT)have been utilized for these complex decision-making tasks,but each has its limitations:DRL is highly adaptive but lacks interpretability,while DT is inherently interpretable but has limited adaptability.To overcome these challenges,we propose the Adaptive Interpretable Decision Tree(AIDT),an evolutionary-based algorithm that is both adaptable to diverse environmental settings and highly interpretable in its decision-making processes.We first construct a Markov decision process(MDP)-based simulation environment using the Cooperative Submarine Search task as a representative scenario for training and testing the proposed method.Specifically,we use the heat map as a state variable to address the issue of multi-agent input state proliferation.Next,we introduce the curiosity-guiding intrinsic reward to encourage comprehensive exploration and enhance algorithm performance.Additionally,we incorporate decision tree size as an influence factor in the adaptation process to balance task completion with computational efficiency.To further improve the generalization capability of the decision tree,we apply a normalization method to ensure consistent processing of input states.Finally,we validate the proposed algorithm in different environmental settings,and the results demonstrate both its adaptability and interpretability.
基金supported by the National Natural Science Foundation of China(72471240).
文摘When performing tasks,unmanned clusters often face a variety of strategy choices.One of the key issues in unmanned cluster tasks is the method through which to design autonomous collaboration and cooperative evolution mechanisms that allow for unmanned clusters to maximize their overall task effective-ness under the condition of strategic diversity.This paper ana-lyzes these task requirements from three perspectives:the diver-sity of the decision space,information network construction,and the autonomous collaboration mechanism.Then,this paper pro-poses a method for solving the problem of strategy selection diversity under two network structures.Next,this paper presents a Moran-rule-based evolution dynamics model for unmanned cluster strategies and a vision-driven-mechanism-based evolu-tion dynamics model for unmanned cluster strategy in the con-text of strategy selection diversity according to various unmanned cluster application scenarios.Finally,this paper pro-vides a simulation analysis of the effects of relevant parameters such as the payoff factor and cluster size on cooperative evolu-tion in autonomous cluster collaboration for the two types of models.On this basis,this paper presents advice for effectively addressing diverse choices in unmanned cluster tasks,thereby providing decision support for practical applications of unmanned cluster tasks.
基金supported by the National Natural Science Foundation of China(61903099)the Natural Science Foundation of Heilongjiang Province(LH2020F025)+2 种基金the Project of Science and Technology Research Program of Chongqing Education Commission of China(KJZD-K20200470)the Postdoctoral Science Foundation of China(2021M690812)the Postdoctoral Science Fund of Heilongjiang Province(LBH-Z21048).
文摘This paper presents a fixed-time cooperative gui-dance method with impact angle constraints for multiple flight vehicles (MFV) to address the challenges of intercepting large maneuvering targets with difficulty and low precision. A coopera-tive guidance model is proposed, transforming the cooperative interception problem into a consensus problem based on the remaining flight time of the flight vehicles. First, the impact angle constraint is converted into the line of sight (LOS) angle con-straint, and a new fixed-time convergent non-singular terminal sliding surface is introduced, which resolves the singularity issue of the traditional sliding surfaces. With this approach, LOS angle rate and normal overloads can converge in fixed time, ensuring that the upper bound of the system convergence time is not affected by the initial value of the system. Furthermore, the maneuvering movement of the target is considered as a system disturbance, and an extended state observer is employed to estimate and compensate for it in the guidance law. Lastly, by applying consensus theory and distributed communication topology, the remaining flight time of each flight vehicle is syn-chronized to ensure that they intercept the target simulta-neously with different impact angles. Simulation experiments are conducted to validate the effectiveness of the proposed cooper-ative interception and guidance method.
基金supported by the National Natural Science Foundation of China(Grant No.62203362)the Natural Science Basic Research Program of Shaanxi(Grant No.2023-JC-QN-0569)。
文摘A situation maintenance-based cooperative guidance strategy is proposed to intercept a high-speed and high-maneuverability target via inferior missiles.Reachability and relative motion analyses are conducted to develop and pursue virtual targets,respectively.A two-stage guidance strategy under nonlinear kinematics is developed on the basis of virtual targets.The first stage optimizes the coverage and collision situation by pursuing virtual targets under specific angular constraints.The second stage subsequently intercepts the superior target based on the handover condition optimized by the first stage.Numerical simulation results are provided to compare the effectiveness and superiority of the proposed strategy with those of the reachability-based cooperative strategy(RCS),coverage-based cooperative guidance(CBCG)and augmented proportional navigation(APN)under various maneuvering modes.
基金the Science and Technology Department,Heilongjiang Province under Grant Agreement No JJ2022LH0315。
文摘This paper presents a mode-switching collaborative defense strategy for spacecraft pursuit-evasiondefense scenarios.In these scenarios,the pursuer tries to avoid the defender while capturing the evader,while the evader and defender form an alliance to prevent the pursuer from achieving its goal.First,the behavioral modes of the pursuer,including attack and avoidance modes,were established using differential game theory.These modes are then recognized by an interactive multiple model-matching algorithm(IMM),that uses several smooth variable structure filters to match the modes of the pursuer and update their probabilities in real time.Based on the linear-quadratic optimization theory,combined with the results of strategy identification,a two-way cooperative optimal strategy for the defender and evader is proposed,where the evader aids the defender to intercept the pursuer by performing luring maneuvers.Simulation results show that the interactive multi-model algorithm based on several smooth variable structure filters perform well in the strategy identification of the pursuer,and the cooperative defense strategy based on strategy identification has good interception performance when facing pursuers,who are able to flexibly adjust their game objectives.
文摘This paper proposes a distributed event-triggered control(ETC)framework to address cooperative target fencing challenges in UAV swarm.The proposed architecture eliminates the reliance on preset formation parameters while achieving multi-objective cooperative control for target fencing,network connectivity preservation,collision avoidance,and communication efficiency optimization.Firstly,a differential state observer is constructed to obtain the target's unmeasurable states.Secondly,leveraging swarm selforganization principles,a geometric-constraint-free distributed fencing controller is designed by integrating potential field methods with consensus theory.The controller dynamically adjusts inter-UAV distances via single potential function,enabling coordinated optimization of persistent network connectivity and collision-free motion during target fencing.Thirdly,a dual-threshold ETC mechanism based on velocity consensus deviation and fencing error is proposed,which can be triggered based on task features to dynamically adjust the communication frequency,significantly reduce the communication burden and exclude Zeno behavior.Theoretical analysis demonstrates the stability of closed-loop systems.Multi-scenario simulations show that the proposed method can achieve robust fencing under target maneuverability,partial UAV failures,and communication disturbances.
基金supported by the National Key Research and Development Plan(Grant No.2021YFB3302501)the National Natural Science Foundation of China(Grant Nos.12102077,12161076,U2241263).
文摘Combat effectiveness of unmanned aerial vehicle(UAV)formations can be severely affected by the mission execution reliability.During the practical execution phase,there are inevitable risks where UAVs being destroyed or targets failed to be executed.To improve the mission reliability,a resilient mission planning framework integrates task pre-and re-assignment modules is developed in this paper.In the task pre-assignment phase,to guarantee the mission reliability,probability constraints regarding the minimum mission success rate are imposed to establish a multi-objective optimization model.And an improved genetic algorithm with the multi-population mechanism and specifically designed evolutionary operators is used for efficient solution.As in the task-reassignment phase,possible trigger events are first analyzed.A real-time contract net protocol-based algorithm is then proposed to address the corresponding emergency scenario.And the dual objective used in the former phase is adapted into a single objective to keep a consistent combat intention.Three cases of different scales demonstrate that the two modules cooperate well with each other.On the one hand,the pre-assignment module can generate high-reliability mission schedules as an elaborate mathematical model is introduced.On the other hand,the re-assignment module can efficiently respond to various emergencies and adjust the original schedule within a millisecond.The corresponding animation is accessible at bilibili.com/video/BV12t421w7EE for better illustration.
基金supported by the National Natural Science Foundation of China(62003264).
文摘To solve the problem of providing the best initial situation for terminal guidance when multiple missiles intercept multiple targets,a group cooperative midcourse guidance law(GCMGL)considering time-to-go is proposed.Firstly,a threedimensional(3D)guidance model is established and a cooperative trajectory shaping guidance law is given.Secondly,for estimating the unknown target maneuvering acceleration,an adaptive disturbance observer(ADO)is designed,combining finitetime theory with a radial basis function(RBF)neural network,and the convergence of the estimation error is proven using Lyapunov stability theory.Then,to ensure time-to-go cooperation among missiles within the same group and across different groups,the group consensus protocols of virtual collision point mean and the inter-group cooperative consensus protocol are designed respectively.Based on the group consensus protocols,the virtual collision point cooperative guidance law is given,and the finite-time convergence is proved by Lyapunov stability theory.Simultaneously,combined with trajectory shaping guidance law,virtual collision point cooperative guidance law and the intergroup cooperative consensus protocol,the design of GCMGL considering time-to-go is given.Finally,numerical simulation results show the effectiveness and the superiority of the proposed GCMGL.
基金the financial support provided by the National Natural Science Foundation of China(NSFC)(Grant No.62173274)the National Key R&D Program of China(Grant No.2019YFA0405300)+4 种基金the Natural Science Foundation of Hunan Province of China(Grant No.2021JJ10045)the Practice and Innovation Funds for Graduate Students of Northwestern Polytechnical University(Grant No.PF2023046)the Open Research Subject of State Key Laboratory of Intelligent Game(Grant No.ZBKF-24-01)the Postdoctoral Fellowship Program of CPSF(No.GZB20240989)the China Postdoctoral Science Foundation(Grant No.2024M754304)。
文摘The multi-target assignment(MTA)problem,a crucial challenge in command control,mission planning,and a fundamental research focus in military operations,has garnered significant attention over the years.Extensively studied across various domains such as land,sea,air,space,and electronics,the MTA problem has led to the emergence of numerous models and algorithms.To delve deeper into this field,this paper starts by conducting a bibliometric analysis on 463 Scopus database papers using CiteSpace software.The analysis includes examining keyword clustering,co-occurrence,and burst,with visual representations of the results.Following this,the paper provides an overview of current classification and modeling techniques for addressing the MTA problem,distinguishing between static multi-target assignment(SMTA)and dynamic multi-target assignment(DMTA).Subsequently,existing solution algorithms for the MTA problem are reviewed,generally falling into three categories:exact algorithms,heuristic algorithms,and machine learning algorithms.Finally,a development framework is proposed based on the"HIGH"model(high-speed,integrated,great,harmonious)to guide future research and intelligent weapon system development concerning the MTA problem.This framework emphasizes application scenarios,modeling mechanisms,solution algorithms,and system efficiency to offer a roadmap for future exploration in this area.
基金supported by the Intelligent Aerospace System Leading Innovation Team Program of Zhejiang(2022R01003).
文摘In the realm of missile defense systems,the self-sufficient maneuver capacity of missile swarms is pivotal for their survival.Through the analysis of the missile dynamics model,a time-efficient cooperative attack strategy for missile swarm is proposed.Based on the distribution of the attackers and defenders,the collision avoidance against the defenders is considered during the attack process.By analyzing the geometric relationship between the relative velocity vector and relative position vector of the attackers and defenders,the collision avoidance constrains of attacking swarm are redefined.The key point is on adjusting the relative velocity vectors to fall outside the collision cone.This work facilitates high-precision attack toward the target while keeping safe missing distance between other attackers during collision avoidance process.By leveraging an innovative repulsion artificial function,a time-efficient cooperative attack strategy for missile swarm is obtained.Through rigorous simulation,the effectiveness of this cooperative attack strategy is substantiated.Furthermore,by employing Monte Carlo simulation,the success rate of the cooperative attack strategy is assessesed and the optimal configuration for the missile swarm is deduced.
基金financial support provided by the Natural Science Foundation of Hunan Province of China(Grant No.2021JJ10045)the Open Research Subject of State Key Laboratory of Intelligent Game(Grant No.ZBKF-24-01)+1 种基金the Postdoctoral Fellowship Program of CPSF(Grant No.GZB20240989)the China Postdoctoral Science Foundation(Grant No.2024M754304)。
文摘Unmanned aerial vehicles(UAVs)have become crucial tools in moving target tracking due to their agility and ability to operate in complex,dynamic environments.UAVs must meet several requirements to achieve stable tracking,including maintaining continuous target visibility amidst occlusions,ensuring flight safety,and achieving smooth trajectory planning.This paper reviews the latest advancements in UAV-based target tracking,highlighting information prediction,tracking strategies,and swarm cooperation.To address challenges including target visibility and occlusion,real-time prediction and tracking in dynamic environments,flight safety and coordination,resource management and energy efficiency,the paper identifies future research directions aimed at improving the performance,reliability,and scalability of UAV tracking system.
基金supported by the National Natural Science Foundation of China(6237338661973327).
文摘How multi-unmanned aerial vehicles(UAVs)carrying a payload pass an obstacle-dense environment is practically important.Up to now,there have been few results on safe motion planning for the multi-UAVs cooperative transportation system(CTS)to pass through such an environment.The prob-lem is challenging because it is difficult to analyze and explicitly take into account the swing motion of the payload in planning.In this paper,a modeling method of virtual tube is proposed by fus-ing the advantages of the existing modeling algorithm for regu-lar virtual tube and the expansion environment method.The pro-posed method can not only generate a safe and smooth tube for UAVs,but also ensure the payload stays away from the dense obstacles.Simulation results show the effectiveness of the method and the safety of the planned tube.
基金National Natural Science Foundation of China(Grant No.52472417)to provide fund for conducting experiments.
文摘Complex multi-area collaborative coverage path planning in dynamic environments poses a significant challenge for multi-fixed-wing UAVs(multi-UAV).This study establishes a comprehensive framework that incorporates UAV capabilities,terrain,complex areas,and mission dynamics.A novel dynamic collaborative path planning algorithm is introduced,designed to ensure complete coverage of designated areas.This algorithm meticulously optimizes the operation,entry,and transition paths for each UAV,while also establishing evaluation metrics to refine coverage sequences for each area.Additionally,a three-dimensional path is computed utilizing an altitude descent method,effectively integrating twodimensional coverage paths with altitude constraints.The efficacy of the proposed approach is validated through digital simulations and mixed-reality semi-physical experiments across a variety of dynamic scenarios,including both single-area and multi-area coverage by multi-UAV.Results show that the coverage paths generated by this method significantly reduce both computation time and path length,providing a reliable solution for dynamic multi-UAV mission planning in semi-physical environments.