期刊文献+
共找到10,862篇文章
< 1 2 250 >
每页显示 20 50 100
Detection of geohazards caused by human disturbance activities based on convolutional neural networks
1
作者 ZHANG Heng ZHANG Diandian +1 位作者 YUAN Da LIU Tao 《水利水电技术(中英文)》 北大核心 2025年第S1期731-738,共8页
Human disturbance activities is one of the main reasons for inducing geohazards.Ecological impact assessment metrics of roads are inconsistent criteria and multiple.From the perspective of visual observation,the envir... Human disturbance activities is one of the main reasons for inducing geohazards.Ecological impact assessment metrics of roads are inconsistent criteria and multiple.From the perspective of visual observation,the environment damage can be shown through detecting the uncovered area of vegetation in the images along road.To realize this,an end-to-end environment damage detection model based on convolutional neural network is proposed.A 50-layer residual network is used to extract feature map.The initial parameters are optimized by transfer learning.An example is shown by this method.The dataset including cliff and landslide damage are collected by us along road in Shennongjia national forest park.Results show 0.4703 average precision(AP)rating for cliff damage and 0.4809 average precision(AP)rating for landslide damage.Compared with YOLOv3,our model shows a better accuracy in cliff and landslide detection although a certain amount of speed is sacrificed. 展开更多
关键词 convolutional neural network DETECTION environment damage CLIFF LANDSLIDE
在线阅读 下载PDF
High-resolution reconstruction of the ablative RT instability flowfield via convolutional neural networks
2
作者 Xia Zhiyang Kuang Yuanyuan +1 位作者 Lu Yan Yang Ming 《强激光与粒子束》 CAS CSCD 北大核心 2024年第12期42-49,共8页
High-resolution flow field data has important applications in meteorology,aerospace engineering,high-energy physics and other fields.Experiments and numerical simulations are two main ways to obtain high-resolution fl... High-resolution flow field data has important applications in meteorology,aerospace engineering,high-energy physics and other fields.Experiments and numerical simulations are two main ways to obtain high-resolution flow field data,while the high experiment cost and computing resources for simulation hinder the specificanalysis of flow field evolution.With the development of deep learning technology,convolutional neural networks areused to achieve high-resolution reconstruction of the flow field.In this paper,an ordinary convolutional neuralnetwork and a multi-time-path convolutional neural network are established for the ablative Rayleigh-Taylorinstability.These two methods can reconstruct the high-resolution flow field in just a few seconds,and further greatlyenrich the application of high-resolution reconstruction technology in fluid instability.Compared with the ordinaryconvolutional neural network,the multi-time-path convolutional neural network model has smaller error and canrestore more details of the flow field.The influence of low-resolution flow field data obtained by the two poolingmethods on the convolutional neural networks model is also discussed. 展开更多
关键词 convolutional neural networks ablative Rayleigh-Taylor instability high-resolutionreconstruction multi-time-path pooling
在线阅读 下载PDF
基于MSCNN-GRU神经网络补全测井曲线和可解释性的智能岩性识别 被引量:1
3
作者 王婷婷 王振豪 +2 位作者 赵万春 蔡萌 史晓东 《石油地球物理勘探》 北大核心 2025年第1期1-11,共11页
针对传统岩性识别方法在处理测井曲线缺失、准确性以及模型可解释性等方面的不足,提出了一种基于MSCNN-GRU神经网络补全测井曲线和Optuna超参数优化的XGBoost模型的可解释性的岩性识别方法。首先,针对测井曲线在特定层段丢失或失真的问... 针对传统岩性识别方法在处理测井曲线缺失、准确性以及模型可解释性等方面的不足,提出了一种基于MSCNN-GRU神经网络补全测井曲线和Optuna超参数优化的XGBoost模型的可解释性的岩性识别方法。首先,针对测井曲线在特定层段丢失或失真的问题,引入了基于多尺度卷积神经网络(MSCNN)与门控循环单元(GRU)神经网络相结合的曲线重构方法,为后续的岩性识别提供了准确的数据基础;其次,利用小波包自适应阈值方法对数据进行去噪和归一化处理,以减少噪声对岩性识别的影响;然后,采用Optuna框架确定XGBoost算法的超参数,建立了高效的岩性识别模型;最后,利用SHAP可解释性方法对XGBoost模型进行归因分析,揭示了不同特征对于岩性识别的贡献度,提升了模型的可解释性。结果表明,Optuna-XGBoost模型综合岩性识别准确率为79.91%,分别高于支持向量机(SVM)、朴素贝叶斯、随机森林三种神经网络模型24.89%、12.45%、6.33%。基于Optuna-XGBoost模型的SHAP可解释性的岩性识别方法具有更高的准确性和可解释性,能够更好地满足实际生产需要。 展开更多
关键词 岩性识别 多尺度卷积神经网络 门控循环单元神经网络 XGBoost 超参数优化 可解释性
在线阅读 下载PDF
基于RBM-CNN模型的滚动轴承剩余使用寿命预测 被引量:3
4
作者 张永超 杨海昆 +2 位作者 刘嵩寿 赵帅 陈庆光 《轴承》 北大核心 2025年第5期96-101,共6页
针对滚动轴承剩余使用寿命预测时存在特征提取困难及预测准确性较差的问题,提出一种基于受限玻尔兹曼机(RBM)与卷积神经网络(CNN)的滚动轴承剩余使用寿命预测模型。首先,采用快速傅里叶变换对轴承原始振动信号进行频域变换构建幅值谱;其... 针对滚动轴承剩余使用寿命预测时存在特征提取困难及预测准确性较差的问题,提出一种基于受限玻尔兹曼机(RBM)与卷积神经网络(CNN)的滚动轴承剩余使用寿命预测模型。首先,采用快速傅里叶变换对轴承原始振动信号进行频域变换构建幅值谱;其次,通过RBM挖掘幅值谱中的深度全局特征;然后,通过建立早期故障阈值点划分退化阶段;最后,利用深度CNN对轴承剩余使用寿命进行预测。使用辛辛那提大学轴承数据集对所提方法进行验证,并与其他深度学习方法进行对比,结果表明RBM-CNN模型的均方误差(MSE)、均方根误差(RMSE)、平均绝对误差(MAE)最小,预测准确度最高,达到90.05%,验证了RBM-CNN模型在滚动轴承剩余使用寿命预测中的优越性。 展开更多
关键词 滚动轴承 使用寿命 寿命预测 玻尔兹曼机 卷积神经网络
在线阅读 下载PDF
基于CNN模型的地震数据噪声压制性能对比研究 被引量:1
5
作者 张光德 张怀榜 +3 位作者 赵金泉 尤加春 魏俊廷 杨德宽 《石油物探》 北大核心 2025年第2期232-246,共15页
地震噪声的压制是地震勘探中地震数据处理的重要研究内容之一。准确地压制地震噪声和提取地震信号中的有效信息是地震勘探和地震监测的一项关键步骤。传统的地震噪声压制方法存在一些不足之处,如灵活性不足、难以处理复杂噪声、有效信... 地震噪声的压制是地震勘探中地震数据处理的重要研究内容之一。准确地压制地震噪声和提取地震信号中的有效信息是地震勘探和地震监测的一项关键步骤。传统的地震噪声压制方法存在一些不足之处,如灵活性不足、难以处理复杂噪声、有效信息损失以及依赖人工提取特征等局限性。为克服传统方法的不足,采用时频域变换并结合深度学习方法进行地震噪声压制,并验证其应用效果。通过构建5个神经网络模型(FCN、Unet、CBDNet、SwinUnet以及TransUnet)对经过时频变换的地震信号进行噪声压制。为了定量评估实验方法的去噪性能,引入了峰值信噪比(PSNR)、结构相似性指数(SSIM)和均方根误差(RMSE)3个指标,比较不同方法的噪声压制性能。数值实验结果表明,基于时频变换的卷积神经网络(CNN)方法对常见的地震噪声类型(包括随机噪声、海洋涌浪噪声、陆地面波噪声)具有较好的噪声压制效果,能够提高地震数据的信噪比。而Transformer模块的引入可进一步提高对上述3种常见地震数据噪声类型的压制效果,进一步提升CNN模型的去噪性能。尽管该方法在数值实验中取得了较好的应用效果,但仍有进一步优化的空间可供探索,比如改进网络结构以适应更复杂的地震信号,并探索与其他先进技术结合,以提升地震噪声压制性能。 展开更多
关键词 地震噪声压制 深度学习 卷积神经网络(cnn) 时频变换 TRANSFORMER
在线阅读 下载PDF
改进抗噪1D-CNN的旋转车轮动平衡状态监测 被引量:1
6
作者 周海超 关浩东 +2 位作者 王国林 张宇 赵春来 《振动.测试与诊断》 北大核心 2025年第2期309-315,412,413,共9页
针对实车旋转车轮动平衡状态难以实时监测及预判的问题,提出了一种融合注意力机制的抗噪一维卷积神经网络(noise resistant 1D convolutional neural network,简称NRCNN)的旋转车轮动平衡健康状态监测方法。首先,构建NRCNN模型,以在实... 针对实车旋转车轮动平衡状态难以实时监测及预判的问题,提出了一种融合注意力机制的抗噪一维卷积神经网络(noise resistant 1D convolutional neural network,简称NRCNN)的旋转车轮动平衡健康状态监测方法。首先,构建NRCNN模型,以在实车车轮上添加3种不同质量平衡块的方式获得3种不同速度下对应的旋转车轮动不平衡状态下的振动信息;其次,以高斯白噪声为噪声输入,对所测旋转车轮不同动平衡状态的振动信息进行处理,获得试验样本数据,并用其进行模型训练;然后,综合运用卷积运算机制和特征变换进行t分布随机邻域嵌入(t-distributed stochastic neighbor embedding,简称t-SNE)可视化显示,实现对不同动平衡状态的分类输出。结果表明,在不同信噪比的工况下,所提出的改进NRCNN模型旋转车轮的动平衡状态监测方法相比于传统一维卷积神经网络(1D convolutional neural network,简称1D-CNN)模型,展现出更高的诊断准确性,最高可达到99.95%。 展开更多
关键词 卷积神经网络 注意力机制 车轮动平衡 状态监测 高斯白噪声
在线阅读 下载PDF
基于ASFF-AAKR和CNN-BILSTM滚动轴承寿命预测 被引量:1
7
作者 张永超 刘嵩寿 +2 位作者 陈昱锡 杨海昆 陈庆光 《科学技术与工程》 北大核心 2025年第2期567-573,共7页
针对滚动轴承寿命预测精度低,构建健康指标困难的问题。提出了一种基于自适应特征融合(adaptively spatial feature fusion,ASFF)和自联想核回归模型(auto associative kernel regression,AAKR)与卷积神经网络(convolutional neural net... 针对滚动轴承寿命预测精度低,构建健康指标困难的问题。提出了一种基于自适应特征融合(adaptively spatial feature fusion,ASFF)和自联想核回归模型(auto associative kernel regression,AAKR)与卷积神经网络(convolutional neural networks,CNN)和双向长短期记忆网络(bi-directional long-short term memory,BILSTM)的轴承剩余寿命预测模型。首先,在时域、频域和时频域提取多维特征,利用单调性和趋势性筛选敏感特征;其次利用ASFF-AAKR对敏感特征进行特征融合构建健康指标;最后,将健康指标输入到CNN和BILSTM中,实现对滚动轴承的寿命预测。结果表明:所构建的寿命预测模型优于其他模型,该方法具有更低的误差、寿命预测精度更高。 展开更多
关键词 滚动轴承 自适应特征融合 自联想核回归 卷积神经网络 双向长短期记忆网络 剩余寿命预测
在线阅读 下载PDF
融合持续同调-CNN的灰度化光伏红外图像的识别和分类 被引量:2
8
作者 孙海蓉 唐振超 +1 位作者 张洪玮 周黎辉 《太阳能学报》 北大核心 2025年第6期321-328,共8页
针对卷积神经网络对光伏红外热斑图像进行识别和分类准确率低、计算量大、光伏红外图像上热斑特征难以识别的问题,提出一种基于持续同调的对灰度化光伏热斑图像提取拓扑特征的算法。首先,将光伏红外热斑图像灰度化;然后将灰度化之后的... 针对卷积神经网络对光伏红外热斑图像进行识别和分类准确率低、计算量大、光伏红外图像上热斑特征难以识别的问题,提出一种基于持续同调的对灰度化光伏热斑图像提取拓扑特征的算法。首先,将光伏红外热斑图像灰度化;然后将灰度化之后的图像进行持续同调计算,得到条形码,从条形码中提取其拓扑特征组成新的图像;最后,用卷积神经网络对新的图像进行识别和分类。实验结果表明,灰度化后的光伏红外图像是一个单通道图像,计算量更小;提取的光伏红外热斑图像拓扑特征更易识别和分类,准确率更高。 展开更多
关键词 特征提取 卷积神经网络 持续同调 拓扑数据分析 拓扑特征 识别和分类
在线阅读 下载PDF
小样本下基于DWT和2D-CNN的齿轮故障诊断方法 被引量:1
9
作者 宋庭新 黄继承 +2 位作者 刘尚奇 杜敏 李子平 《计算机集成制造系统》 北大核心 2025年第6期2206-2214,共9页
针对齿轮设备运维过程中故障信号较少的情况,提出一种将离散小波变换(DWT)与二维卷积神经网络(2D-CNN)相结合的故障识别方法。该方法通过将少量信号经卷积神经网络得到的分类标签与信号的小波能量进行权值分配,实现对齿轮的故障识别。... 针对齿轮设备运维过程中故障信号较少的情况,提出一种将离散小波变换(DWT)与二维卷积神经网络(2D-CNN)相结合的故障识别方法。该方法通过将少量信号经卷积神经网络得到的分类标签与信号的小波能量进行权值分配,实现对齿轮的故障识别。为了充分获取小样本中的信息来训练神经网络,利用离散小波分解、图像变换和Markov变迁场方法对样本信号进行增量和转换。通过验证齿轮箱数据集得到96%的训练准确率和87.5%的分类准确率,同时通过消融实验和对比实验证明,该方法可以有效克服小样本数据中的噪声干扰,使数据得到增强,在齿轮故障识别中具有很好的现实意义。 展开更多
关键词 故障诊断 小样本 二维卷积神经网络 小波变换
在线阅读 下载PDF
融合改进采样技术和SRFCNN-BiLSTM的入侵检测方法 被引量:1
10
作者 陈虹 由雨竹 +2 位作者 金海波 武聪 邹佳澎 《计算机工程与应用》 北大核心 2025年第9期315-324,共10页
针对目前很多入侵检测方法中因数据不平衡和特征冗余导致检测率低等问题,提出融合改进采样技术和SRFCNN-BiLSTM的入侵检测方法。设计一种FBS-RE混合采样算法,即Borderline-SMOTE过采样和RENN欠采样同时对多数类和少数类样本进行处理,解... 针对目前很多入侵检测方法中因数据不平衡和特征冗余导致检测率低等问题,提出融合改进采样技术和SRFCNN-BiLSTM的入侵检测方法。设计一种FBS-RE混合采样算法,即Borderline-SMOTE过采样和RENN欠采样同时对多数类和少数类样本进行处理,解决数据不平衡问题。利用堆叠降噪自动编码器(stacked denoising auto encoder,SDAE)进行数据降维,减少噪声对数据的影响,去除冗余特征。采用改进的卷积神经网络(split residual fuse convolutional neural network,SRFCNN)和双向长短期记忆网络(bi-directional long short-term memory,BiLSTM)更好地提取数据中的空间和时间特征,结合注意力机制对特征分配不同的权重,获得更好的分类能力,提高对少数攻击流量的检测率。最后,在UNSW-NB15数据集上对模型进行验证,准确率和F1分数为89.24%和90.36%,优于传统机器学习和深度学习模型。 展开更多
关键词 入侵检测 不平衡处理 堆叠降噪自动编码器 卷积神经网络 注意力机制
在线阅读 下载PDF
基于CNN和Transformer双流融合的人体姿态估计
11
作者 李鑫 张丹 +2 位作者 郭新 汪松 陈恩庆 《计算机工程与应用》 北大核心 2025年第5期187-199,共13页
卷积神经网络(CNN)和Transformer模型在人体姿态估计中有着广泛应用,然而Transformer更注重捕获图像的全局特征,忽视了局部特征对于人体姿态细节的重要性,而CNN则缺乏Transformer的全局建模能力。为了充分利用CNN处理局部信息和Transfor... 卷积神经网络(CNN)和Transformer模型在人体姿态估计中有着广泛应用,然而Transformer更注重捕获图像的全局特征,忽视了局部特征对于人体姿态细节的重要性,而CNN则缺乏Transformer的全局建模能力。为了充分利用CNN处理局部信息和Transformer处理全局信息的优势,构建一种CNN-Transformer双流的并行网络架构来聚合丰富的特征信息。由于传统Transformer的输入需要将图片展平为多个patch,不利于提取对位置敏感的人体结构信息,因此将其多头注意力结构进行改进,使模型输入能够保持原始2D特征图的结构;同时提出特征耦合模块融合两个分支不同分辨率下的特征,最大限度地保留局部特征与全局特征;最后引入改进后的坐标注意力模块(coordinate attention),进一步提升网络的特征提取能力。在COCO和MPII数据集上的实验结果表明所提模型相对目前主流模型具有更高的检测精度,从而说明所提模型能够充分捕获并融合人体姿态中的局部和全局特征。 展开更多
关键词 卷积神经网络 TRANSFORMER 局部特征 全局特征 2D特征图 特征耦合
在线阅读 下载PDF
小样本下基于MTF与SSCAM-MSCNN的滚动轴承变工况故障诊断方法 被引量:1
12
作者 雷春丽 焦孟萱 +2 位作者 薛林林 张护强 史佳硕 《计算机集成制造系统》 北大核心 2025年第1期278-289,共12页
针对滚动轴承在不同工况条件下样本分布不同以及故障样本数量不足导致故障诊断精度低、泛化性能差的问题,提出一种小样本下基于MTF与SSCAM-MSCNN的滚动轴承变工况故障诊断方法。首先,运用马尔科夫转移场(MTF)将一维振动信号转化为具有... 针对滚动轴承在不同工况条件下样本分布不同以及故障样本数量不足导致故障诊断精度低、泛化性能差的问题,提出一种小样本下基于MTF与SSCAM-MSCNN的滚动轴承变工况故障诊断方法。首先,运用马尔科夫转移场(MTF)将一维振动信号转化为具有时间相关性的二维特征图。其次,提出条纹自校正注意力机制(SSCAM),它不仅可以加强模型在长距离方向上的特征提取能力,还能建立通道间依赖关系,可以对全局有效信息进行捕捉。然后,将SSCAM引入到多尺度神经网络(MSCNN)中,构建出SSCAM-MSCNN模型。最后,将MTF二维特征图输入到所提模型中进行训练,采用优化后的网络模型进行测试并输出分类结果。通过美国凯斯西储大学以及本实验室MFS滚动轴承数据集对所提方法进行验证,同时对后者进行加噪处理,与其他故障诊断模型进行对比。试验结果表明,所提方法在小样本、变工况条件下具有更高的识别精度、更强的泛化性能与抗噪性能。 展开更多
关键词 滚动轴承 马尔科夫转移场 卷积神经网络 条纹自校正注意力机制 小样本 故障诊断
在线阅读 下载PDF
基于改进BERT和轻量化CNN的业务流程合规性检查方法
13
作者 田银花 杨立飞 +1 位作者 韩咚 杜玉越 《计算机工程》 北大核心 2025年第7期199-209,共11页
业务流程合规性检查可以帮助企业及早发现潜在问题,保证业务流程的正常运行和安全性。提出一种基于改进BERT(Bidirectional Encoder Representations from Transformers)和轻量化卷积神经网络(CNN)的业务流程合规性检查方法。首先,根据... 业务流程合规性检查可以帮助企业及早发现潜在问题,保证业务流程的正常运行和安全性。提出一种基于改进BERT(Bidirectional Encoder Representations from Transformers)和轻量化卷积神经网络(CNN)的业务流程合规性检查方法。首先,根据历史事件日志中的轨迹提取轨迹前缀,构造带拟合情况标记的数据集;其次,使用融合相对上下文关系的BERT模型完成轨迹特征向量的表示;最后,使用轻量化CNN模型构建合规性检查分类器,完成在线业务流程合规性检查,有效提高合规性检查的准确率。在5个真实事件日志数据集上进行实验,结果表明,该方法相比Word2Vec+CNN模型、Transformer模型、BERT分类模型在准确率方面有较大提升,且与传统BERT+CNN相比,所提方法的准确率最高可提升2.61%。 展开更多
关键词 业务流程 合规性检查 表示学习 事件日志 卷积神经网络
在线阅读 下载PDF
CNN结合Transformer的高光谱图像和LiDAR数据协同地物分类方法
14
作者 吴海滨 左云逸 +2 位作者 王爱丽 吕浩然 王敏慧 《仪器仪表学报》 北大核心 2025年第8期286-301,共16页
在高光谱图像与LiDAR数据协同分类的研究领域中,尽管CNN和Transformer在图像处理和数据分析中分别展现出对局部特征和全局依赖关系的敏锐洞察力,但二者的协同机制尚未充分挖掘,跨模态特征互补潜力未被有效释放。故提出了一种CNN结合Tran... 在高光谱图像与LiDAR数据协同分类的研究领域中,尽管CNN和Transformer在图像处理和数据分析中分别展现出对局部特征和全局依赖关系的敏锐洞察力,但二者的协同机制尚未充分挖掘,跨模态特征互补潜力未被有效释放。故提出了一种CNN结合Transformer的高光谱图像和LiDAR数据的多模态遥感数据协同地物分类方法。首先,该模型通过主成分分析对高光谱图像进行降维处理以去除光谱的冗余信息,继而利用CNN分层捕获局部纹理特征,同时借助Transformer自注意力机制构建全局光谱-空间表征。然后通过双向特征交互机制,将Transformer输出的全局上下文信息注入CNN特征通道,同时将CNN通道提取的局部细节反馈至Transformer支路,经特征耦合单元实现跨尺度特征对齐,强化模型对高光谱图像全局结构与局部细节的联合提取能力。对于LiDAR数据,采用动态卷积级联模块有效捕获高程信息和上下文关系,最终通过跨模态特征融合模块实现双源数据特征的深度交互与融合,在双模态语义互补中提升复杂地物的分类精度。在Houston2013、Trento和Augsburg这3个公开数据集上的实验表明,该方法总体分类精度分别达到99.85%、99.68%和97.34%,平均准确率分别达到99.87%、99.34%和90.60%,较GLT、HCT等主流方法的分类精度有所提高,充分证明所提方法进行多模态数据协同分类的优势和有效性。 展开更多
关键词 高光谱图像 LIDAR数据 TRANSFORMER 卷积神经网络 多模态数据
在线阅读 下载PDF
基于1DCNN特征提取和RF分类的滚动轴承故障诊断
15
作者 张豪 刘其洪 +1 位作者 李伟光 李漾 《中国测试》 北大核心 2025年第4期137-143,共7页
针对深度学习技术在滚动轴承故障诊断识别中依赖于大量测量数据,相对较少的数据可能会导致过度拟合并降低模型的稳定性等问题,提出一种一维卷积神经网络(1DCNN)和随机森林(RF)相结合的轴承故障诊断模型。将原始时域信号输入搭建的1DCNN... 针对深度学习技术在滚动轴承故障诊断识别中依赖于大量测量数据,相对较少的数据可能会导致过度拟合并降低模型的稳定性等问题,提出一种一维卷积神经网络(1DCNN)和随机森林(RF)相结合的轴承故障诊断模型。将原始时域信号输入搭建的1DCNN网络中,提取原始数据特征向量,对特征向量进行t-SNE降维可视化,验证1DCNN特征提取的有效性。将特征向量输入随机森林实现故障状态识别,解决小样本的滚动轴承故障分类问题。在CWRU数据集和Paderborn数据集上进行实验,针对不同类型、不同损伤程度的轴承,得到分类结果准确率分别达到99.69%和99.16%。与传统的神经网络和机器学习分类模型相比,1DCNN-RF模型具有更高的诊断准确率,可验证所提模型的泛化性和有效性。 展开更多
关键词 滚动轴承 故障诊断 一维卷积神经网络 随机森林
在线阅读 下载PDF
基于PSO-PCA-CNN的水电机组故障诊断
16
作者 姬升阳 魏学锋 +4 位作者 曾广栋 朱斌 周鑫 何志宏 李超顺 《水电能源科学》 北大核心 2025年第10期178-181,211,共5页
为了充分利用水电机组振动信号资源,建立更高效的故障诊断模型,提出利用主成分分析(PCA)对振动数据进行降维,基于粒子群算法(PSO)优化目标维度和卷积神经网络(CNN)参数的故障诊断模型。首先将多通道的原始振动数据进行通道层面的降维,... 为了充分利用水电机组振动信号资源,建立更高效的故障诊断模型,提出利用主成分分析(PCA)对振动数据进行降维,基于粒子群算法(PSO)优化目标维度和卷积神经网络(CNN)参数的故障诊断模型。首先将多通道的原始振动数据进行通道层面的降维,再将降维后数据输入CNN网络进行故障诊断分类;其次采用PSO对目标维度和CNN模型中部分关键参数进行寻优,实现信号自适应降维,构建更高效的模型;最后基于寻优结果进行数据降维和模型深入训练,获得最优诊断模型,输出诊断结果。基于某水电机组不同工况下的实测振动数据进行试验对比和分析,验证了所提方法具有较高的诊断精度和稳定性。 展开更多
关键词 故障诊断 水电机组 粒子群算法 主成分分析 卷积神经网络
在线阅读 下载PDF
基于PLS与CNN的甘薯淀粉掺假鉴别及量化比较
17
作者 夏珍珍 张博源 +5 位作者 郑丹 陶明芳 张仙 廖先清 余琼卫 彭西甜 《食品科学》 北大核心 2025年第20期327-336,共10页
本研究提出一种基于近红外光谱(near-infrared spectroscopy,NIR)和一维卷积神经网络(one-dimension convolutional neural network,1D-CNN)的甘薯淀粉掺假鉴别与定量的分析方法。为实现甘薯淀粉在不同种类和掺假比例下的定性定量分析,... 本研究提出一种基于近红外光谱(near-infrared spectroscopy,NIR)和一维卷积神经网络(one-dimension convolutional neural network,1D-CNN)的甘薯淀粉掺假鉴别与定量的分析方法。为实现甘薯淀粉在不同种类和掺假比例下的定性定量分析,分别采集甘薯、玉米、土豆、木薯等纯薯类淀粉和以10%为梯度制备的不同比例掺假甘薯淀粉的原始光谱。分别运用一阶导数(first-order derivative,1st)、连续小波变换(continuous wavelet transform,CWT)、多元散射校正(multiplicative scatter correction,MSC)和标准正态变换(standard normal variate transformation,SNV)进行光谱预处理,利用卷积神经网络(convolutional neural network,CNN)算法将预处理前后的光谱作为1D-CNN的输入信号构建薯类淀粉分类模型和甘薯淀粉含量预测模型,并将光谱预处理前后的1D-CNN建模效果与传统的偏最小二乘(partial least squares,PLS)建模结果进行比较。结果表明,不同的光谱预处理方法可以不同程度地提高分类模型和定量模型的准确度,其中1st和CWT方法的效果要优于MSC和SNV方法。分类模型中,1D-CNN方法的预测精度较PLS方法更高;预测集中,样品光谱预处理后使用1D-CNN对不同薯类淀粉预测正确率达到100%;定量模型中,PLS方法和1D-CNN方法均可实现单一混合淀粉掺假情况下甘薯淀粉含量的精准预测,而且PLS和1D-CNN模型的预测集决定系数和预测集均方根误差相近。与PLS方法相比,1D-CNN方法在分类上的效果要优于定量效果。本研究表明NIR、1D-CNN和PLS相结合可以实现掺假薯类淀粉的鉴别和其中甘薯淀粉含量的量化,对市场中薯类淀粉掺假的质量安全筛查具有现实意义。 展开更多
关键词 近红外光谱 甘薯淀粉 淀粉掺假 卷积神经网络 偏最小二乘
在线阅读 下载PDF
基于高光谱成像和MSC1DCNN的大豆种子热损伤无损检测
18
作者 谭克竹 孙伟奇 +3 位作者 卓宗慧 李凯诺 张喜海 闫超 《光谱学与光谱分析》 北大核心 2025年第10期2897-2905,共9页
大豆种子由于存储和运输不当,容易产生热损伤问题。热损伤会影响种子的种质质量和发芽率,因此准确地检测热损伤大豆种子对于提高种子品质和农业生产具有重要意义。本文提出了一种基于高光谱成像和多尺度跨通道一维卷积神经网络(MSC1DCNN... 大豆种子由于存储和运输不当,容易产生热损伤问题。热损伤会影响种子的种质质量和发芽率,因此准确地检测热损伤大豆种子对于提高种子品质和农业生产具有重要意义。本文提出了一种基于高光谱成像和多尺度跨通道一维卷积神经网络(MSC1DCNN)的大豆种子热损伤无损检测方法。首先,通过高光谱成像系统获取大豆种子在400~1000 nm波段的光谱数据,并对比分析不同热损伤大豆种子(正常、轻微热损伤、严重热损伤)的光谱曲线特点。发现在420~500 nm蓝光区域和750~1000 nm近红外区域,光谱反射率随着热损伤程度的加深逐渐增大。这些变化为后续的热损伤检测提供了有效的光谱特征依据。其次,采用MSC1DCNN模型进行分类,该模型在测试集上的准确率、召回率和F1分数均达到99.07%,优于支持向量机(SVC)(F1分数为88.32%)、k-近邻算法(KNN)(F1分数为84.39%)及一维卷积神经网络(1D CNN)(F1分数为92.90%)。特别地,MSC1DCNN模型在鉴别轻微热损伤与正常大豆种子时误判率为1.39%,显著低于SVC(12.04%)、KNN(15.74%)和1D CNN(9.72%)模型。最后,还通过发芽试验验证了热损伤对大豆种子发芽率的影响。实验结果表明,热损伤显著降低了大豆种子的发芽率,进一步证实了热损伤对大豆生长的潜在危害。综上所述,本研究提出的MSC1DCNN模型为热损伤大豆种子的无损检测提供了一种有效解决方案,对种质质量检测和自动化筛选工作提供了新的思路。 展开更多
关键词 大豆种子 高光谱 热损伤 一维卷积
在线阅读 下载PDF
基于CNN-Transformer混合模型的辣椒病害识别
19
作者 尚俊平 张冬阳 +3 位作者 杜玉科 席磊 程金鹏 刘合兵 《中国农机化学报》 北大核心 2025年第10期168-175,F0002,共9页
为提高辣椒病害识别精度,克服传统模型对病害特征捕捉不全导致的分类错误与漏检问题,提出一种CNN-Transformer混合架构辣椒病害识别模型CTF-Net。在网络低层设计增强卷积模块FEC,将SE注意力机制引入MobileNetV2卷积模块MV2,自适应调整... 为提高辣椒病害识别精度,克服传统模型对病害特征捕捉不全导致的分类错误与漏检问题,提出一种CNN-Transformer混合架构辣椒病害识别模型CTF-Net。在网络低层设计增强卷积模块FEC,将SE注意力机制引入MobileNetV2卷积模块MV2,自适应调整通道权重,增强对关键特征的敏感度。并结合平均池化和最大池化特征提取分支,增强模型在多尺度和多视角下的特征提取能力;在网络高层设计具备自适应特征选择能力的动态CNN-Transformer融合模块DCT,根据输入数据的特征分布动态调整特征提取策略,平衡局部细节与全局信息的捕捉,优化特征表示;基于迁移学习进行训练,进一步提升模型的特征学习能力和泛化能力。试验结果表明,计算量FLOPs仅为640.6 M的CTF-Net模型迁移学习后在辣椒病害数据集上的识别准确率达到97.5%,与经典模型MobileViT、MobileNetV3-small、ResNet34、AlexNet、VGG16和Swin Transformer相比,分类准确率分别提高7.6%、8.2%、6.6%、19.7%、3.7%和5.3%,在精确率、召回率、特异度、F1分数等指标上均有优势。 展开更多
关键词 辣椒 病害识别 卷积神经网络 自注意力机制 迁移学习
在线阅读 下载PDF
改进灰狼优化算法优化CNN-LSTM的PEMFC性能衰退预测 被引量:1
20
作者 高锋阳 刘庆寅 +2 位作者 赵丽丽 齐丰旭 刘嘉 《电力系统保护与控制》 北大核心 2025年第13期175-187,共13页
为进一步提高车用质子交换膜燃料电池(proton exchange membrane fuel cell, PEMFC)电堆性能衰退预测与剩余使用寿命预测精度,提出一种改进灰狼优化算法优化卷积神经网络-长短期记忆(convolutional neural network-long short-term memo... 为进一步提高车用质子交换膜燃料电池(proton exchange membrane fuel cell, PEMFC)电堆性能衰退预测与剩余使用寿命预测精度,提出一种改进灰狼优化算法优化卷积神经网络-长短期记忆(convolutional neural network-long short-term memory, CNN-LSTM)的车用PEMFC性能衰退预测方法。首先,通过稳定小波变换对数据集去噪重构,使用改进灰狼算法对实测PEMFC电堆衰退数据进行分析,获得CNN-LSTM最优超参数。其次,利用最优超参数训练CNN-LSTM网络模型进行PEMFC性能衰退预测,并计算PEMFC电堆剩余使用寿命。最后,在电堆静态和动态工况下,将所提方法与传统长短期记忆循环网络、门控循环单元循环网络和未经优化的CNN-LSTM等模型预测进行比较。结果表明:在静态工况中,当训练集占比为60%时,所提方法相比传统CNN-LSTM预测结果均方根误差缩小59.02%,当训练集占比为70%时,PEMFC剩余使用寿命预测与实际相差1.16 h;在动态工况中,当训练集占比为40%时,平均绝对误差缩小18.78%。 展开更多
关键词 质子交换膜燃料电池 改进灰狼优化算法 卷积神经网络-长短期记忆 衰退预测 剩余使用寿命
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部