异常肺音听诊识别是儿童支气管肺部疾病诊断的一种重要手段。针对儿童异常肺音分类研究常用的声谱图图像识别方法计算资源大、识别率不高等问题,提出了一种结合梅尔倒谱系数(Mel frequency cepstral coefficients,MFCC)特征、卷积神经网...异常肺音听诊识别是儿童支气管肺部疾病诊断的一种重要手段。针对儿童异常肺音分类研究常用的声谱图图像识别方法计算资源大、识别率不高等问题,提出了一种结合梅尔倒谱系数(Mel frequency cepstral coefficients,MFCC)特征、卷积神经网络(convolutional neural network,CNN)与双向长短时记忆网络(bidirectional long short-term memory,BiLSTM)的混合模型,用于儿童异常肺音的分类方法。该方法通过CNN对MFCC特征进行空间特性提取,利用BiLSTM对MFCC音频特征进行时序特性提取,建立了BCNnet(BILSTM CNN network)模型。文章收集并建立了一个儿童肺音数据集,在该数据集上,所提方法平均准确率可达75.3%,与以声谱图为输入的CNN(并行池化)模型相比,准确率提高了3.7个百分点,且在模型大小和识别速度上均有改善。展开更多