A hardware-in-the-loop simulating platform is developed to avoid designing defects caused by the complicated logical structure and multiple-functional buildup of the dectronic control unit(ECU)in modem diesel engine...A hardware-in-the-loop simulating platform is developed to avoid designing defects caused by the complicated logical structure and multiple-functional buildup of the dectronic control unit(ECU)in modem diesel engines, and to diminish potential damages on components or human exposure to dangers in R&D en- deavor. This plat-form consists of a computer installed with software Matlab/Simulink/RTW and dSPACE/ ControlDesk; a diesel engine ECU, and a dSPACE autobox which runs a real-time diesel engine model. A typical model of diesel engine with turbocharger and intercooler is presented. Based on this model our research is carried out with a real ECU to test its software control strategies. Results show that by using the diesel engine model downloaded inside, the hardware-in-the-loop platform can simulate diesel engine's working conditions and generate all kinds of sensor signals which ECU needs on a real-time basis. So the ECU control strategies can be validated and relevant parameters roughly calibrated.展开更多
The performance of the electronic unit pump (EUP) diesel engine is studied, it will be used in the integrated powertrain and its multi parameters are controllable. Both the theoretical analysis and experiment research...The performance of the electronic unit pump (EUP) diesel engine is studied, it will be used in the integrated powertrain and its multi parameters are controllable. Both the theoretical analysis and experiment research are taken. A control unit for the fuel quantity and timing in crankshaft domain is designed on this basis and the engine experiment test has been done. For the constant speed camshaft driving EUP system, the fuel quantity will increase as the supply angle goes up and injection timing has no effect. The control precision can reach 1°CA. The full injection timing MAP and engine peak performance curves are made successfully.展开更多
This paper is concerned with the development of electronic controller for turbine POwer units. In order to increase the reliability of the POwer unit, three control loops working in the hi-backup mode have been employ...This paper is concerned with the development of electronic controller for turbine POwer units. In order to increase the reliability of the POwer unit, three control loops working in the hi-backup mode have been employed. This control strategy is able to satisfy the demands of the application of the power unit to the aviation fields.展开更多
The Cooling Storage Ring of the Heavy Ion Research Facility in Lanzhou(HIRFL-CSR)was constructed to study nuclear physics,atomic physics,interdisciplinary science,and related applications.The External Target Facility(...The Cooling Storage Ring of the Heavy Ion Research Facility in Lanzhou(HIRFL-CSR)was constructed to study nuclear physics,atomic physics,interdisciplinary science,and related applications.The External Target Facility(ETF)is located in the main ring of the HIRFL-CSR.The gamma detector of the ETF is built to measure emitted gamma rays with energies below 5 MeV in the center-of-mass frame and is planned to measure light fragments with energies up to 300 MeV.The readout electronics for the gamma detector were designed and commissioned.The readout electronics consist of thirty-two front-end cards,thirty-two readout control units(RCUs),one common readout unit,one synchronization&clock unit,and one sub-trigger unit.By using the real-time peak-detection algorithm implemented in the RCU,the data volume can be significantly reduced.In addition,trigger logic selection algorithms are implemented to improve the selection of useful events and reduce the data size.The test results show that the integral nonlinearity of the readout electronics is less than 1%,and the energy resolution for measuring the 60 Co source is better than 5.5%.This study discusses the design and performance of the readout electronics.展开更多
基金Sponsored by the Ministerial Level Advanced Research(10660060220)
文摘A hardware-in-the-loop simulating platform is developed to avoid designing defects caused by the complicated logical structure and multiple-functional buildup of the dectronic control unit(ECU)in modem diesel engines, and to diminish potential damages on components or human exposure to dangers in R&D en- deavor. This plat-form consists of a computer installed with software Matlab/Simulink/RTW and dSPACE/ ControlDesk; a diesel engine ECU, and a dSPACE autobox which runs a real-time diesel engine model. A typical model of diesel engine with turbocharger and intercooler is presented. Based on this model our research is carried out with a real ECU to test its software control strategies. Results show that by using the diesel engine model downloaded inside, the hardware-in-the-loop platform can simulate diesel engine's working conditions and generate all kinds of sensor signals which ECU needs on a real-time basis. So the ECU control strategies can be validated and relevant parameters roughly calibrated.
文摘The performance of the electronic unit pump (EUP) diesel engine is studied, it will be used in the integrated powertrain and its multi parameters are controllable. Both the theoretical analysis and experiment research are taken. A control unit for the fuel quantity and timing in crankshaft domain is designed on this basis and the engine experiment test has been done. For the constant speed camshaft driving EUP system, the fuel quantity will increase as the supply angle goes up and injection timing has no effect. The control precision can reach 1°CA. The full injection timing MAP and engine peak performance curves are made successfully.
文摘This paper is concerned with the development of electronic controller for turbine POwer units. In order to increase the reliability of the POwer unit, three control loops working in the hi-backup mode have been employed. This control strategy is able to satisfy the demands of the application of the power unit to the aviation fields.
基金supported by the National Natural Science Foundation of China (Nos. 12222512, 12375193, U2031206, U1831206, and U2032209)the Scientific Instrument Developing Project of the Chinese Academy of Sciences (GJJSTD20210009)+1 种基金the CAS Pioneer Hundred Talent Programthe CAS Light of West China Program
文摘The Cooling Storage Ring of the Heavy Ion Research Facility in Lanzhou(HIRFL-CSR)was constructed to study nuclear physics,atomic physics,interdisciplinary science,and related applications.The External Target Facility(ETF)is located in the main ring of the HIRFL-CSR.The gamma detector of the ETF is built to measure emitted gamma rays with energies below 5 MeV in the center-of-mass frame and is planned to measure light fragments with energies up to 300 MeV.The readout electronics for the gamma detector were designed and commissioned.The readout electronics consist of thirty-two front-end cards,thirty-two readout control units(RCUs),one common readout unit,one synchronization&clock unit,and one sub-trigger unit.By using the real-time peak-detection algorithm implemented in the RCU,the data volume can be significantly reduced.In addition,trigger logic selection algorithms are implemented to improve the selection of useful events and reduce the data size.The test results show that the integral nonlinearity of the readout electronics is less than 1%,and the energy resolution for measuring the 60 Co source is better than 5.5%.This study discusses the design and performance of the readout electronics.