Nowadays manufacturers are facing fierce challenge.Apart from the products,providing customers with multiple maintenance options in the service contract becomes more popular,since it can help to improve customer satis...Nowadays manufacturers are facing fierce challenge.Apart from the products,providing customers with multiple maintenance options in the service contract becomes more popular,since it can help to improve customer satisfaction,and ultimately promote sales and maximize profit for the manufacturer.By considering the combinations of corrective maintenance and preventive maintenance,totally three types of maintenance service contracts are designed.Moreover,attractive incentive and penalty mechanisms are adopted in the contracts.On this basis,Nash non-cooperative game is applied to analyze the revenue for both the manufacturer and customers,and so as to optimize the pricing mechanism of maintenance service contract and achieve a win-win situation.Numerical experiments are conducted.The results show that by taking into account the incentive and penalty mechanisms,the revenue can be improved for both the customers and manufacturer.Moreover,with the increase of repair rate and improvement factor in the preventive maintenance,the revenue will increase gradually for both the parties.展开更多
With the urgent need to resolve complex behaviors in nonlinear evolution equations,this study makes a contribution by establishing the local existence of solutions for Cauchy problems associated with equations of mixe...With the urgent need to resolve complex behaviors in nonlinear evolution equations,this study makes a contribution by establishing the local existence of solutions for Cauchy problems associated with equations of mixed types.Our primary contribution is the establishment of solution existence,illuminating the dynamics of these complex equations.To tackle this challenging problem,we construct an approximate solution sequence and apply the contraction mapping principle to rigorously prove local solution existence.Our results significantly advance the understanding of nonlinear evolution equations of mixed types.Furthermore,they provide a versatile,powerful approach for tackling analogous challenges across physics,engineering,and applied mathematics,making this work a valuable reference for researchers in these fields.展开更多
Combat effectiveness of unmanned aerial vehicle(UAV)formations can be severely affected by the mission execution reliability.During the practical execution phase,there are inevitable risks where UAVs being destroyed o...Combat effectiveness of unmanned aerial vehicle(UAV)formations can be severely affected by the mission execution reliability.During the practical execution phase,there are inevitable risks where UAVs being destroyed or targets failed to be executed.To improve the mission reliability,a resilient mission planning framework integrates task pre-and re-assignment modules is developed in this paper.In the task pre-assignment phase,to guarantee the mission reliability,probability constraints regarding the minimum mission success rate are imposed to establish a multi-objective optimization model.And an improved genetic algorithm with the multi-population mechanism and specifically designed evolutionary operators is used for efficient solution.As in the task-reassignment phase,possible trigger events are first analyzed.A real-time contract net protocol-based algorithm is then proposed to address the corresponding emergency scenario.And the dual objective used in the former phase is adapted into a single objective to keep a consistent combat intention.Three cases of different scales demonstrate that the two modules cooperate well with each other.On the one hand,the pre-assignment module can generate high-reliability mission schedules as an elaborate mathematical model is introduced.On the other hand,the re-assignment module can efficiently respond to various emergencies and adjust the original schedule within a millisecond.The corresponding animation is accessible at bilibili.com/video/BV12t421w7EE for better illustration.展开更多
A task allocation problem for the heterogeneous unmanned aerial vehicle (UAV) swarm in unknown environments is studied in this paper.Considering that the actual mission environment information may be unknown,the UAV s...A task allocation problem for the heterogeneous unmanned aerial vehicle (UAV) swarm in unknown environments is studied in this paper.Considering that the actual mission environment information may be unknown,the UAV swarm needs to detect the environment first and then attack the detected targets.The heterogeneity of UAVs,multiple types of tasks,and the dynamic nature of task environment lead to uneven load and time sequence problems.This paper proposes an improved contract net protocol (CNP) based task allocation scheme,which effectively balances the load of UAVs and improves the task efficiency.Firstly,two types of task models are established,including regional reconnaissance tasks and target attack tasks.Secondly,for regional reconnaissance tasks,an improved CNP algorithm using the uncertain contract is developed.Through uncertain contracts,the area size of the regional reconnaissance task is determined adaptively after this task assignment,which can improve reconnaissance efficiency and resource utilization.Thirdly,for target attack tasks,an improved CNP algorithm using the fuzzy integrated evaluation and the double-layer negotiation is presented to enhance collaborative attack efficiency through adjusting the assignment sequence adaptively and multi-layer allocation.Finally,the effectiveness and advantages of the improved method are verified through comparison simulations.展开更多
基金supported by the National Natural Science Foundation of China(71671035)。
文摘Nowadays manufacturers are facing fierce challenge.Apart from the products,providing customers with multiple maintenance options in the service contract becomes more popular,since it can help to improve customer satisfaction,and ultimately promote sales and maximize profit for the manufacturer.By considering the combinations of corrective maintenance and preventive maintenance,totally three types of maintenance service contracts are designed.Moreover,attractive incentive and penalty mechanisms are adopted in the contracts.On this basis,Nash non-cooperative game is applied to analyze the revenue for both the manufacturer and customers,and so as to optimize the pricing mechanism of maintenance service contract and achieve a win-win situation.Numerical experiments are conducted.The results show that by taking into account the incentive and penalty mechanisms,the revenue can be improved for both the customers and manufacturer.Moreover,with the increase of repair rate and improvement factor in the preventive maintenance,the revenue will increase gradually for both the parties.
基金Supported by the National Natural Science Foundation of China(12201368,62376252)Key Project of Natural Science Foundation of Zhejiang Province(LZ22F030003)Zhejiang Province Leading Geese Plan(2024C02G1123882,2024C01SA100795).
文摘With the urgent need to resolve complex behaviors in nonlinear evolution equations,this study makes a contribution by establishing the local existence of solutions for Cauchy problems associated with equations of mixed types.Our primary contribution is the establishment of solution existence,illuminating the dynamics of these complex equations.To tackle this challenging problem,we construct an approximate solution sequence and apply the contraction mapping principle to rigorously prove local solution existence.Our results significantly advance the understanding of nonlinear evolution equations of mixed types.Furthermore,they provide a versatile,powerful approach for tackling analogous challenges across physics,engineering,and applied mathematics,making this work a valuable reference for researchers in these fields.
基金supported by the National Key Research and Development Plan(Grant No.2021YFB3302501)the National Natural Science Foundation of China(Grant Nos.12102077,12161076,U2241263).
文摘Combat effectiveness of unmanned aerial vehicle(UAV)formations can be severely affected by the mission execution reliability.During the practical execution phase,there are inevitable risks where UAVs being destroyed or targets failed to be executed.To improve the mission reliability,a resilient mission planning framework integrates task pre-and re-assignment modules is developed in this paper.In the task pre-assignment phase,to guarantee the mission reliability,probability constraints regarding the minimum mission success rate are imposed to establish a multi-objective optimization model.And an improved genetic algorithm with the multi-population mechanism and specifically designed evolutionary operators is used for efficient solution.As in the task-reassignment phase,possible trigger events are first analyzed.A real-time contract net protocol-based algorithm is then proposed to address the corresponding emergency scenario.And the dual objective used in the former phase is adapted into a single objective to keep a consistent combat intention.Three cases of different scales demonstrate that the two modules cooperate well with each other.On the one hand,the pre-assignment module can generate high-reliability mission schedules as an elaborate mathematical model is introduced.On the other hand,the re-assignment module can efficiently respond to various emergencies and adjust the original schedule within a millisecond.The corresponding animation is accessible at bilibili.com/video/BV12t421w7EE for better illustration.
基金National Natural Science Foundation of China (12202293)Sichuan Science and Technology Program (2023NSFSC0393,2022NSFSC1952)。
文摘A task allocation problem for the heterogeneous unmanned aerial vehicle (UAV) swarm in unknown environments is studied in this paper.Considering that the actual mission environment information may be unknown,the UAV swarm needs to detect the environment first and then attack the detected targets.The heterogeneity of UAVs,multiple types of tasks,and the dynamic nature of task environment lead to uneven load and time sequence problems.This paper proposes an improved contract net protocol (CNP) based task allocation scheme,which effectively balances the load of UAVs and improves the task efficiency.Firstly,two types of task models are established,including regional reconnaissance tasks and target attack tasks.Secondly,for regional reconnaissance tasks,an improved CNP algorithm using the uncertain contract is developed.Through uncertain contracts,the area size of the regional reconnaissance task is determined adaptively after this task assignment,which can improve reconnaissance efficiency and resource utilization.Thirdly,for target attack tasks,an improved CNP algorithm using the fuzzy integrated evaluation and the double-layer negotiation is presented to enhance collaborative attack efficiency through adjusting the assignment sequence adaptively and multi-layer allocation.Finally,the effectiveness and advantages of the improved method are verified through comparison simulations.