The insensitive munitions compound nitroguanidine(NQ)is used by the U.S.Army to avoid unintended explosions.However,NQ also represents an emerging contaminant whose environmental emissions can cause toxicity toward aq...The insensitive munitions compound nitroguanidine(NQ)is used by the U.S.Army to avoid unintended explosions.However,NQ also represents an emerging contaminant whose environmental emissions can cause toxicity toward aquatic organisms,indicating the need for effective remediation strategies.Thus,we investigated the feasibility of treating water contaminated with NQ in continuous-flow columns packed with zero-valent iron(ZVI)or iron sulfide(FeS).Initially,the impact of pH on NQ transformation by ZVI or FeS was evaluated in batch experiments.The pseudo first-order rate constant for NQ transformation(k_(1,NQ))by ZVI was 8-10 times higher at pH 3.0 compared to pH 5.5 and 7.0,whereas similar k_(1,NQ)values were obtained for FeS at pH 5.5-10.0.Based on these findings,the influent p H fed to the ZVIand Fe S-packed columns was adjusted to 3.0 and 5.5,respectively.Both reactors transformed NQ into nitrosoguanidine(Nso Q).Further transformation of Nso Q by ZVI produced aminoguanidine,guanidine,and cyanamide,whereas Nso Q transformation by Fe S produced guanidine,ammonium,and traces of urea.ZVI outperformed Fe S as a reactive material to remove NQ.The ZVI-packed column effectively removed NQ below detection even after 45 d of operation(490 pore volumes,PV).In contrast,NQ breakthrough(removal efficiency<85%)was observed after 18 d(180 PV)in the Fe S-packed column.The high NQ removal efficiency and long service life of the ZVI-packed column(>490 PV)suggest that the technology is a promising approach for NQ treatment in packed-bed reactors and in situ remediation.展开更多
High-overload shocks are very likely to cause damage to the microstructure of MEMS devices, especially the continuous multiple high-overload shocks generated by the penetration of the multilayer target environment pos...High-overload shocks are very likely to cause damage to the microstructure of MEMS devices, especially the continuous multiple high-overload shocks generated by the penetration of the multilayer target environment pose more stringent challenges to its protective structure. In this study, the kinetic response model of the protective structure under single-pulse and continuous double-pulse impact is established,and a continuous double-pulse high overload impact test impact platform based on the sleeve-type bullet is constructed, and the protective performance of the multi-layer structure under multi-pulse is analyzed based on the acceleration decay ratio, and the results show that the protective performance of the structure has a positive correlation with its thickness, and it is not sensitive to the change of the load of the first impact;the first impact under double-pulse impact will cause damage to the microstructure through the superposition of the second impact. The first impact under double-pulse impact will cause an increase in the overload amplitude of the second impact through superposition;compared with the single-layer structure, the acceleration attenuation ratio of the double-layer structure can be increased by up to 26.13%, among which the epoxy-polyurethane combination has the best protection performance, with an acceleration attenuation ratio of up to 44.68%. This work provides a robust theoretical foundation and experimental basis for the reliable operation of MEMS devices, as well as for the design of protective structures in extreme environments.展开更多
In order to improve the energy output consistency of 3, 3’-diamino-4, 4’-azoxyfurazan(DAAF) in the new insensitive booster and the safety and efficiency in the preparation process, a continuous preparation system of...In order to improve the energy output consistency of 3, 3’-diamino-4, 4’-azoxyfurazan(DAAF) in the new insensitive booster and the safety and efficiency in the preparation process, a continuous preparation system of DAAF from synthesis to spherical coating was designed and established in this paper, which combined ultrasonic micromixing reaction with microdroplet globular template. In the rapid micromixing stage, the microfluidic mixing technology with ultrasonic was used to synergistically strengthen the uniform and rapid mass transfer mixing reaction between raw materials to ensure the uniformity of DAAF particle nucleation-growth, and to prepare high-quality DAAF crystals with uniform structure and morphology and concentrated particle size distribution. In the microdroplet globular template stage, the microfluidic droplet technology was used to form a droplet globular template with uniform size under the shear action of the continuous phase of the dispersed phase solution containing DAAF particles and binder. The size of the droplet template was controlled by adjusting the flow rate ratio between the continuous phase and the dispersed phase. In the droplet globular template, with the diffusion of the solvent in the dispersed phase droplets, the binder precipitates to coat the DAAF into a ball, forming a DAAF microsphere with high sphericity, narrow particle size distribution and good monodispersity. The problem of discontinuity and DAAF particle suspension in the process was solved, and the coating theory under this process was studied. DAAF was coated with different binder formulations of fluororubber(F2604), nitrocellulose(NC) and NC/glycidyl azide polymer(GAP), and the process verification and evaluation of the system were carried out. The balling effects of large, medium and small droplet templates under different binder formulations were studied. The scanning electron microscope(SEM) results show that the three droplet templates under the three binder formulations exhibit good balling effect and narrow particle size distribution. The DAAF microspheres were characterized by powder X-ray diffraction(XRD), differential scanning calorimetry(DSC), thermo-gravimetric(TG) and sensitivity analyzer. The results showed that the crystal structure of DAAF did not change during the process, and the prepared DAAF microspheres had lower decomposition temperature and lower mechanical sensitivity than raw DAAF. The results of detonation parameters show that the coating of DAAF by using the above three binder formulations will not greatly reduce the energy output of DAAF, and has comparable detonation performance to raw DAAF. This study proves an efficient and safe continuous system from synthesis to spherical coating modification of explosives, which provides a new way for the continuous, safe and efficient preparation of spherical explosives.展开更多
Considering arch rib, lateral brace, suspender, girder, pier and track position, the model for the interaction between long-span tied arch continuous bridge and multiple tracks was established by using steel-concrete ...Considering arch rib, lateral brace, suspender, girder, pier and track position, the model for the interaction between long-span tied arch continuous bridge and multiple tracks was established by using steel-concrete composite section beam element to simulate concrete-filled steel tube(CFST) arch rib, using the beam element with rigid arm to simulate the prestressed concrete girder and using nonlinear bar element to simulate longitudinal constraint between track and bridge. Taking a(77+3×156.8+77) m tied arch continuous bridge with four tracks on the Harbin-Qiqihar Passenger Dedicated Line as an example, the arrangement of continuously welded rail(CWR) was explored. The longitudinal force in CWR on the tied arch continuous bridge, the pier top horizontal force and torque due to the unbalance load case, were analyzed under the action of temperature, vertical live load, train braking and wind load.Studies show that, it can significantly reduce track displacement to set the track expansion devices at main span arch springing on both sides; the track stress due to arch temperature variation can reach 40.8 MPa; the track stress, pier top horizontal force and torque are related to the number of loaded tracks and train running direction, and the bending force applied to unloaded track is close to the loaded track, while the braking force applied to unloaded track is 1/4 to 1/2 of the loaded track; the longitudinal force of track due to the wind load is up to 12.4 MPa, which should be considered.展开更多
Ballastless tracks have been widely applied in high-speed railway (HSR). The adaptability research between continuous welded rails (CWR) and long-span bridges of HSR is of great practical engineering significance. Bas...Ballastless tracks have been widely applied in high-speed railway (HSR). The adaptability research between continuous welded rails (CWR) and long-span bridges of HSR is of great practical engineering significance. Based on the HSR long-span continuous bridges, the integrative spatial finite element model of track-bridge-pier-foundation system was established with the nonlinear spring element simulating the longitudinal resistance between track and bridge. Comparative study on the various additional longitudinal forces of CWR using the common fasteners and small resistance fasteners was carried out. Analysis results indicate that the additional expansion forces and additional rail-breaking forces in long-span ballastless continuous girders can be reduced evidently by 40% 50% after adopting small resistance fasteners, but lead to greater rail broken gap. The small resistance fasteners have little influence on the additional force only caused by vertical load, but can reduce the additional force caused by vertical load combined with braking load by over 10%. Besides, transient analysis method is proved to be more accurate and safe in calculating additional longitudinal forces when the train running or braking on the bridge, compared with the traditional static method.展开更多
A proven beam-track contact model was used to analyze the track-structure interaction of CWR (continuously welded track) on bridge. Considering the impact of adjacent bridges, the tower-cable-track-beam-pier-pile fini...A proven beam-track contact model was used to analyze the track-structure interaction of CWR (continuously welded track) on bridge. Considering the impact of adjacent bridges, the tower-cable-track-beam-pier-pile finite element model of the cable-stayed bridge was established. Taking a bridge group including 40-32m simply-supported beam and (32+80+112)m single-tower cable-stayed bridge and 17-32m simply-supported beam on the Kunming-Shanghai high-speed railway as an example, the characteristics of CWR longitudinal force on the cable-stayed bridge were studied. It is shown that adjacent bridges must be considered in the calculation of the track expansion force and bending force on cable-stayed bridge. When the span amount of adjacent bridges is too numerous, it can be simplified as six spans; the fixed bearing of adjacent simply-supported beams should be placed on the side near the cable-stayed bridge; the track expansion device should be set at the bridge tower to reduce the track force near the bridge abutment.展开更多
In order to continuously simulate multi-pass plate rolling process,a 3-D elastic hollow-roll model was proposed and an auto mesh-refining module with data passing was developed and integrated with FE software,Marc.The...In order to continuously simulate multi-pass plate rolling process,a 3-D elastic hollow-roll model was proposed and an auto mesh-refining module with data passing was developed and integrated with FE software,Marc.The hollow-roll model has equivalent stiffness of bending resistance and deformation to the real solid and much less meshes,so the computational time is greatly reduced.Based on these,the factors influencing plate profile,such as the roll-bending force,initial crown,thermal crown and heat transfer during rolling and inter-pass cooling can be taken into account in the simulation.The auto mesh-refining module with data passing can automatically refine and re-number elements and transfer the nodal and elemental results to the new meshes.Furthermore,the 3-D modeling routine is parametrically developed and can be run independently of Marc pre-processing program.A seven-pass industrial hot rolling process was continuously simulated to validate the accuracy of model.By comparison of the calculated results with the industrial measured data,the rolling force,temperature and plate profile are in good accordance with the measured ones.展开更多
In order to increase productivity and reduce energy consumption of steelmaking-continuous casting(SCC) production process, especially with complicated technological routes, the cross entropy(CE) method was adopted to ...In order to increase productivity and reduce energy consumption of steelmaking-continuous casting(SCC) production process, especially with complicated technological routes, the cross entropy(CE) method was adopted to optimize the SCC production scheduling(SCCPS) problem. Based on the CE method, a matrix encoding scheme was proposed and a backward decoding method was used to generate a reasonable schedule. To describe the distribution of the solution space, a probability distribution model was built and used to generate individuals. In addition, the probability updating mechanism of the probability distribution model was proposed which helps to find the optimal individual gradually. Because of the poor stability and premature convergence of the standard cross entropy(SCE) algorithm, the improved cross entropy(ICE) algorithm was proposed with the following improvements: individual generation mechanism combined with heuristic rules, retention mechanism of the optimal individual, local search mechanism and dynamic parameters of the algorithm. Simulation experiments validate that the CE method is effective in solving the SCCPS problem with complicated technological routes and the ICE algorithm proposed has superior performance to the SCE algorithm and the genetic algorithm(GA).展开更多
Following the assumptions proposed by MESRI and ROKHSAR,the one-dimensional nonlinear consolidation problem of soil under constant loading is studied by introducing continuous drainage boundary.The numerical solution ...Following the assumptions proposed by MESRI and ROKHSAR,the one-dimensional nonlinear consolidation problem of soil under constant loading is studied by introducing continuous drainage boundary.The numerical solution is derived by using finite difference method and its correctness is assessed by comparing with existing analytical and numerical solutions.Based on the present solution,the effects of interface parameters,stress ratios(i.e.,final effective stress over initial effective stress,N_(σ))and the ratio c_(c)/c_(k)of compression index to permeability index on the consolidation behavior of soil are studied in detail.The results show that,the characteristics of one-dimensional nonlinear consolidation of soil are not only related to c_(c)/c_(k)and N_(σ),but also related to boundary conditions.In the engineering practice,the soil drainage rate of consolidation process can be designed by adjusting the values of interface parameters.展开更多
With the help of similar material simulation test,time series system for induced caving of roof in continuous mining under complex backfill in ore body No.92 of Tongkeng Tin Mine was studied. According to the similari...With the help of similar material simulation test,time series system for induced caving of roof in continuous mining under complex backfill in ore body No.92 of Tongkeng Tin Mine was studied. According to the similarity theory,a two-dimensional similar simulation test-bed was constructed. The stress and displacement that change along with the advance of mining were acquired and analyzed automatically by data system. The processes of continuous mining of ore-block in 5 intervals and artificial induced caving of roof were simulated. The results of the test show that ore body remained as safety roof in thickness of 15 m guarantees the safe advance of stoping work face. Caving of safety roof puts in practice at the first two mining intervals when the third interval of continuous mining is finished,and one interval as the safety distance should be kept all the time between stopping and caving. While mining in the last interval,pre-slotting should be implemented first of all,and the roof of the last two mining intervals is caved simultaneously. Only this kind of time series system can be an efficient and safe way for induced caving of roof in continuous mining.展开更多
A high speed steel composite roll billet was fabricated, which is regular in shape, smooth in surface, slight in trace, compact in internal structure, free of slag inclusion, shrinkage cavity, cracks and other flaws, ...A high speed steel composite roll billet was fabricated, which is regular in shape, smooth in surface, slight in trace, compact in internal structure, free of slag inclusion, shrinkage cavity, cracks and other flaws, and good in macro quality of junction surface using a vertical continuous casting machine. The interface zone microstructure of bimetallic in billet of high speed steel composite roll was analyzed by metallurgical microscope(OM), X-ray diffractmeter(XRD), scanning electron microscopy(SEM) and energy-dispersive X-ray analysis(EDS). The results indicate that the microstructure of roll billet is composed of chilled solidified layer, dendrite zone, interfacial zone of bimetal and core material zone. The microstructure of outer shell material is composed of martensite + bainite + residual austenite + some small labyrinth-shape, small-short lath-shape, or dollop-shape eutectic carbides. The microstructure of core material is slice-shape pearlite and a little ferrite along boundary of cells. The interface region microstructure of bimetallic composite roll consists of diffusion region, chilled solidified layer and columnar grain region.展开更多
Deformation behavior of slab at the straightening stage during continuous casting was simulated by the explicit dynamic finite element method,and the stress distribution along the width direction of the slab and its c...Deformation behavior of slab at the straightening stage during continuous casting was simulated by the explicit dynamic finite element method,and the stress distribution along the width direction of the slab and its change regularity at slab center during continuous casting were obtained.The influence of distribution and change of stress on the propagation of longitudinal cracks on slab surface was discussed.The results show that the tensional stress appears on slab surface at the inner arc side and the compressive stress appears on slab surface at the outer arc side at stages 6-8 in straightening zone during continuous casting.Longitudinal cracks generally appear on slab top surface and do not appear on slab bottom surface,which are also observed in industry.展开更多
In order to meet the precision requirements and tracking performance of the continuous rotary motor electro-hydraulic servo system under unknown strong non-linear and uncertain strong disturbance factors,such as dynam...In order to meet the precision requirements and tracking performance of the continuous rotary motor electro-hydraulic servo system under unknown strong non-linear and uncertain strong disturbance factors,such as dynamic uncertainty and parameter perturbation,an improved active disturbance rejection control(ADRC)strategy was proposed.The state space model of the fifth order closed-loop system was established based on the principle of valve-controlled hydraulic motor.Then the three parts of ADRC were improved by parameter perturbation and external disturbance;the fast tracking differentiator was introduced into linear and non-linear combinations;the nonlinear state error feedback was proposed using synovial control;the extended state observer was determined by nonlinear compensation.In addition,the grey wolf algorithm was used to set the parameters of the three parts.The simulation and experimental results show that the improved ADRC can realize the system frequency 12 Hz when the tracking accuracy and response speed meet the requirements of double ten indexes,which lay foundation for the motor application.展开更多
The 2024/3003 aluminum gradient alloys are prepared by semi continuous casting. The influences of throttle bore diameter of embedded nozzle and temperature of internal melt on composition distribution, macrostructure,...The 2024/3003 aluminum gradient alloys are prepared by semi continuous casting. The influences of throttle bore diameter of embedded nozzle and temperature of internal melt on composition distribution, macrostructure, hardness are analyzed, and the stability of gradient distribution of composition, macrostructure and hardness along the axial direction of the ingot is also studied. The results show that diffe rent composition profiles can be achieved by adjusting the processing parameters; the volume fraction of inner alloy in the ingot can be increased by enlarging the throttle bore diameter and elevating the temperature of inner melt; quasi steady solidification can be realized within 20 s during cast processing, and consistent quality ingot is obtained by controlling the casting speed and liquid height of inner melt.展开更多
In this study,the micro-failure process and failure mechanism of a typical brittle rock under uniaxial compression are investigated via continuous real-time measurement of wave velocities.The experimental results indi...In this study,the micro-failure process and failure mechanism of a typical brittle rock under uniaxial compression are investigated via continuous real-time measurement of wave velocities.The experimental results indicate that the evolutions of wave velocities became progressively anisotropic under uniaxial loading due to the direction-dependent development of micro-damage.A wave velocity model considering the inner anisotropic crack evolution is proposed to accurately describe the variations of wave velocities during uniaxial compression testing.Based on which,the effective elastic parameters are inferred by a transverse isotropic constitutive model,and the evolutions of the crack density are inversed using a self-consistent damage model.It is found that the propagation of axial cracks dominates the failure process of brittle rock under uniaxial loading and oblique shear cracks develop with the appearance of macrocrack.展开更多
A new mechanics model, which reveals additional longitudinal force transmission between the continuously welded rails and the bridges, is established on the fact that the influence of the mutual relative displacement ...A new mechanics model, which reveals additional longitudinal force transmission between the continuously welded rails and the bridges, is established on the fact that the influence of the mutual relative displacement (among) the rail, the sleeper and the beam is taken into account. An example is presented and numerical results are compared. The results show that the additional longitudinal forces calculated with the new model are less than those of the previous, especially in the case of the flexible pier bridges. The new model is also suitable for the analysis of the additional longitudinal force transmission between rails and bridges of ballastless track with small resistance fasteners without taking the sleeper displacement into account, and compared with the ballast bridges, the ballastless bridges have a much stronger additional longitudinal force transmission between the continuously welded rails and the bridges.展开更多
Enhanced speech based on the traditional wavelet threshold function had auditory oscillation distortion and the low signal-to-noise ratio (SNR). In order to solve these problems, a new continuous differentiable thresh...Enhanced speech based on the traditional wavelet threshold function had auditory oscillation distortion and the low signal-to-noise ratio (SNR). In order to solve these problems, a new continuous differentiable threshold function for speech enhancement was presented. Firstly, the function adopted narrow threshold areas, preserved the smaller signal speech, and improved the speech quality; secondly, based on the properties of the continuous differentiable and non-fixed deviation, each area function was attained gradually by using the method of mathematical derivation. It ensured that enhanced speech was continuous and smooth; it removed the auditory oscillation distortion; finally, combined with the Bark wavelet packets, it further improved human auditory perception. Experimental results show that the segmental SNR and PESQ (perceptual evaluation of speech quality) of the enhanced speech using this method increase effectively, compared with the existing speech enhancement algorithms based on wavelet threshold.展开更多
To understand the solidification behavior of austenitic stainless steel in rotary electromagnetic-field, the influence of low-frequency rotary electromagnetic-field on solidification structure of austenitic stainless ...To understand the solidification behavior of austenitic stainless steel in rotary electromagnetic-field, the influence of low-frequency rotary electromagnetic-field on solidification structure of austenitic stainless steel in horizontal continuous casting was investigated based on industrial experiments. The results show that the solidification structure of austenitic stainless steel can be remarkably refined, the central porosity and shrinkage cavity can be remarkably decreased, and the equiaxed grains zone are enlarged by means of application of appropriate low-frequency electromagnetic-field parameters. The industrial trials verify that the stirring intensity of austenitic stainless steel should be higher compared with that of plain carbon steel. Electromagnetic stirring affects the macrostructure even if the average magnetic flux density of the electromagnetic stirring reaches 90 mT (amplitude reaches 141 mT) with the frequency of 3-4 Hz. Due to a higher viscosity, rotating speed of molten stainless steel is 20%-30% lower than that of molten carbon steel in the same magnetic flux density.展开更多
To recycle arsenic from an As-Sb fly ash,a newly continuous reductive method for obtaining elemental As with additive of PbO was proposed.In the first reduction stage,PbO promoted the As segregation from the As-Sb fly...To recycle arsenic from an As-Sb fly ash,a newly continuous reductive method for obtaining elemental As with additive of PbO was proposed.In the first reduction stage,PbO promoted the As segregation from the As-Sb fly ash,due to which most As volatilized and Sb retained in roasted residues in phases of As-Sb-Pb-O and As-Sb-Pb alloy.With the increase of PbO and reductant amounts,the Sb fixation rate increased in the first reduction stage,and further the Sb content in the elemental As obtained from the second reduction stage decreased.After being roasted for 30 min at 550℃ with the addition of 20%activated carbon and 12%PbO in the first reduction stage,the As volatilization rate and Sb fixation rate from the As-Sb fly ash reached 92.86%and 79.38%,respectively.Then through the second reduction of the volatile matters at 650℃,the As and Sb contents in the obtained elemental As reached 99.07 wt%and 0.22 wt%respectively,indicating that the obtained As could be used to prepare high purity As,thereby rendering the As-Sb fly ash recycling.展开更多
An online method using continuous flow isotope ratio mass spectrometry (CF-IRMS) interfaced with a Gasbench Ⅱ was presented to determine chlorine stable isotope composition. Silver chloride (AgCl) was quantitativ...An online method using continuous flow isotope ratio mass spectrometry (CF-IRMS) interfaced with a Gasbench Ⅱ was presented to determine chlorine stable isotope composition. Silver chloride (AgCl) was quantitatively derived from chloride by using silver nitrate (AgNO3), and then was reacted with iodomethane (CH3Ⅰ) to produce methyl chloride (CH3Cl). A GasBench Ⅱ equipped with a PoraPlot Q column was used to separate CH3Cl from any other gas species. Finally, chlorine stable isotope analysis was carried out on CH3Cl introduced to the IRMS in a helium stream via an active open split. The minimum amount of Cl used in this method is of the order of 1.4 μmol. Inter-laboratory and inter-technique comparisons show that the total uncertainty incorporating both the precision and accuracy of this method is better than 0.007%. Furthermore, ten seawaters sampled from different locations have a narrow δ37Cl value range from -0.008% to 0.010%, with a mean value of (0.000±0.006)%. This supports the assumption that any seawater can be representative of standard mean ocean chloride (SMOC) and used as an international reference material.展开更多
基金financially supported by the Strategic Environmental Research and Development Program(Grant No.ER19-1075)。
文摘The insensitive munitions compound nitroguanidine(NQ)is used by the U.S.Army to avoid unintended explosions.However,NQ also represents an emerging contaminant whose environmental emissions can cause toxicity toward aquatic organisms,indicating the need for effective remediation strategies.Thus,we investigated the feasibility of treating water contaminated with NQ in continuous-flow columns packed with zero-valent iron(ZVI)or iron sulfide(FeS).Initially,the impact of pH on NQ transformation by ZVI or FeS was evaluated in batch experiments.The pseudo first-order rate constant for NQ transformation(k_(1,NQ))by ZVI was 8-10 times higher at pH 3.0 compared to pH 5.5 and 7.0,whereas similar k_(1,NQ)values were obtained for FeS at pH 5.5-10.0.Based on these findings,the influent p H fed to the ZVIand Fe S-packed columns was adjusted to 3.0 and 5.5,respectively.Both reactors transformed NQ into nitrosoguanidine(Nso Q).Further transformation of Nso Q by ZVI produced aminoguanidine,guanidine,and cyanamide,whereas Nso Q transformation by Fe S produced guanidine,ammonium,and traces of urea.ZVI outperformed Fe S as a reactive material to remove NQ.The ZVI-packed column effectively removed NQ below detection even after 45 d of operation(490 pore volumes,PV).In contrast,NQ breakthrough(removal efficiency<85%)was observed after 18 d(180 PV)in the Fe S-packed column.The high NQ removal efficiency and long service life of the ZVI-packed column(>490 PV)suggest that the technology is a promising approach for NQ treatment in packed-bed reactors and in situ remediation.
基金supported by Fund of the National Natural Science Foundation of China (Grant No. 52375553)。
文摘High-overload shocks are very likely to cause damage to the microstructure of MEMS devices, especially the continuous multiple high-overload shocks generated by the penetration of the multilayer target environment pose more stringent challenges to its protective structure. In this study, the kinetic response model of the protective structure under single-pulse and continuous double-pulse impact is established,and a continuous double-pulse high overload impact test impact platform based on the sleeve-type bullet is constructed, and the protective performance of the multi-layer structure under multi-pulse is analyzed based on the acceleration decay ratio, and the results show that the protective performance of the structure has a positive correlation with its thickness, and it is not sensitive to the change of the load of the first impact;the first impact under double-pulse impact will cause damage to the microstructure through the superposition of the second impact. The first impact under double-pulse impact will cause an increase in the overload amplitude of the second impact through superposition;compared with the single-layer structure, the acceleration attenuation ratio of the double-layer structure can be increased by up to 26.13%, among which the epoxy-polyurethane combination has the best protection performance, with an acceleration attenuation ratio of up to 44.68%. This work provides a robust theoretical foundation and experimental basis for the reliable operation of MEMS devices, as well as for the design of protective structures in extreme environments.
基金National Natural Science Foundation of China(Grant No.22005275)to provide fund for conducting experiments.
文摘In order to improve the energy output consistency of 3, 3’-diamino-4, 4’-azoxyfurazan(DAAF) in the new insensitive booster and the safety and efficiency in the preparation process, a continuous preparation system of DAAF from synthesis to spherical coating was designed and established in this paper, which combined ultrasonic micromixing reaction with microdroplet globular template. In the rapid micromixing stage, the microfluidic mixing technology with ultrasonic was used to synergistically strengthen the uniform and rapid mass transfer mixing reaction between raw materials to ensure the uniformity of DAAF particle nucleation-growth, and to prepare high-quality DAAF crystals with uniform structure and morphology and concentrated particle size distribution. In the microdroplet globular template stage, the microfluidic droplet technology was used to form a droplet globular template with uniform size under the shear action of the continuous phase of the dispersed phase solution containing DAAF particles and binder. The size of the droplet template was controlled by adjusting the flow rate ratio between the continuous phase and the dispersed phase. In the droplet globular template, with the diffusion of the solvent in the dispersed phase droplets, the binder precipitates to coat the DAAF into a ball, forming a DAAF microsphere with high sphericity, narrow particle size distribution and good monodispersity. The problem of discontinuity and DAAF particle suspension in the process was solved, and the coating theory under this process was studied. DAAF was coated with different binder formulations of fluororubber(F2604), nitrocellulose(NC) and NC/glycidyl azide polymer(GAP), and the process verification and evaluation of the system were carried out. The balling effects of large, medium and small droplet templates under different binder formulations were studied. The scanning electron microscope(SEM) results show that the three droplet templates under the three binder formulations exhibit good balling effect and narrow particle size distribution. The DAAF microspheres were characterized by powder X-ray diffraction(XRD), differential scanning calorimetry(DSC), thermo-gravimetric(TG) and sensitivity analyzer. The results showed that the crystal structure of DAAF did not change during the process, and the prepared DAAF microspheres had lower decomposition temperature and lower mechanical sensitivity than raw DAAF. The results of detonation parameters show that the coating of DAAF by using the above three binder formulations will not greatly reduce the energy output of DAAF, and has comparable detonation performance to raw DAAF. This study proves an efficient and safe continuous system from synthesis to spherical coating modification of explosives, which provides a new way for the continuous, safe and efficient preparation of spherical explosives.
基金Project(51378503)supported by the National Natural Science Foundation of ChinaProject(2014M552158)supported by China Postdoctoral Science Foundation
文摘Considering arch rib, lateral brace, suspender, girder, pier and track position, the model for the interaction between long-span tied arch continuous bridge and multiple tracks was established by using steel-concrete composite section beam element to simulate concrete-filled steel tube(CFST) arch rib, using the beam element with rigid arm to simulate the prestressed concrete girder and using nonlinear bar element to simulate longitudinal constraint between track and bridge. Taking a(77+3×156.8+77) m tied arch continuous bridge with four tracks on the Harbin-Qiqihar Passenger Dedicated Line as an example, the arrangement of continuously welded rail(CWR) was explored. The longitudinal force in CWR on the tied arch continuous bridge, the pier top horizontal force and torque due to the unbalance load case, were analyzed under the action of temperature, vertical live load, train braking and wind load.Studies show that, it can significantly reduce track displacement to set the track expansion devices at main span arch springing on both sides; the track stress due to arch temperature variation can reach 40.8 MPa; the track stress, pier top horizontal force and torque are related to the number of loaded tracks and train running direction, and the bending force applied to unloaded track is close to the loaded track, while the braking force applied to unloaded track is 1/4 to 1/2 of the loaded track; the longitudinal force of track due to the wind load is up to 12.4 MPa, which should be considered.
基金Projects(50908232, 51108460) supported by the National Natural Science Foundation of China
文摘Ballastless tracks have been widely applied in high-speed railway (HSR). The adaptability research between continuous welded rails (CWR) and long-span bridges of HSR is of great practical engineering significance. Based on the HSR long-span continuous bridges, the integrative spatial finite element model of track-bridge-pier-foundation system was established with the nonlinear spring element simulating the longitudinal resistance between track and bridge. Comparative study on the various additional longitudinal forces of CWR using the common fasteners and small resistance fasteners was carried out. Analysis results indicate that the additional expansion forces and additional rail-breaking forces in long-span ballastless continuous girders can be reduced evidently by 40% 50% after adopting small resistance fasteners, but lead to greater rail broken gap. The small resistance fasteners have little influence on the additional force only caused by vertical load, but can reduce the additional force caused by vertical load combined with braking load by over 10%. Besides, transient analysis method is proved to be more accurate and safe in calculating additional longitudinal forces when the train running or braking on the bridge, compared with the traditional static method.
基金Project(51178469) supported by the National Natural Science Foundation of China
文摘A proven beam-track contact model was used to analyze the track-structure interaction of CWR (continuously welded track) on bridge. Considering the impact of adjacent bridges, the tower-cable-track-beam-pier-pile finite element model of the cable-stayed bridge was established. Taking a bridge group including 40-32m simply-supported beam and (32+80+112)m single-tower cable-stayed bridge and 17-32m simply-supported beam on the Kunming-Shanghai high-speed railway as an example, the characteristics of CWR longitudinal force on the cable-stayed bridge were studied. It is shown that adjacent bridges must be considered in the calculation of the track expansion force and bending force on cable-stayed bridge. When the span amount of adjacent bridges is too numerous, it can be simplified as six spans; the fixed bearing of adjacent simply-supported beams should be placed on the side near the cable-stayed bridge; the track expansion device should be set at the bridge tower to reduce the track force near the bridge abutment.
基金Project(20050248007) supported by the Specialized Research Fund for the Doctoral Program of Higher Education of China
文摘In order to continuously simulate multi-pass plate rolling process,a 3-D elastic hollow-roll model was proposed and an auto mesh-refining module with data passing was developed and integrated with FE software,Marc.The hollow-roll model has equivalent stiffness of bending resistance and deformation to the real solid and much less meshes,so the computational time is greatly reduced.Based on these,the factors influencing plate profile,such as the roll-bending force,initial crown,thermal crown and heat transfer during rolling and inter-pass cooling can be taken into account in the simulation.The auto mesh-refining module with data passing can automatically refine and re-number elements and transfer the nodal and elemental results to the new meshes.Furthermore,the 3-D modeling routine is parametrically developed and can be run independently of Marc pre-processing program.A seven-pass industrial hot rolling process was continuously simulated to validate the accuracy of model.By comparison of the calculated results with the industrial measured data,the rolling force,temperature and plate profile are in good accordance with the measured ones.
基金Project(ZR2014FM036)supported by Shandong Provincial Natural Science Foundation of ChinaProject(ZR2010FZ001)supported by the Key Program of Shandong Provincial Natural Science Foundation of China
文摘In order to increase productivity and reduce energy consumption of steelmaking-continuous casting(SCC) production process, especially with complicated technological routes, the cross entropy(CE) method was adopted to optimize the SCC production scheduling(SCCPS) problem. Based on the CE method, a matrix encoding scheme was proposed and a backward decoding method was used to generate a reasonable schedule. To describe the distribution of the solution space, a probability distribution model was built and used to generate individuals. In addition, the probability updating mechanism of the probability distribution model was proposed which helps to find the optimal individual gradually. Because of the poor stability and premature convergence of the standard cross entropy(SCE) algorithm, the improved cross entropy(ICE) algorithm was proposed with the following improvements: individual generation mechanism combined with heuristic rules, retention mechanism of the optimal individual, local search mechanism and dynamic parameters of the algorithm. Simulation experiments validate that the CE method is effective in solving the SCCPS problem with complicated technological routes and the ICE algorithm proposed has superior performance to the SCE algorithm and the genetic algorithm(GA).
基金Projects(51678547,41672296,51878634,51878185,41867034)supported by the National Natural Science Foundation of China。
文摘Following the assumptions proposed by MESRI and ROKHSAR,the one-dimensional nonlinear consolidation problem of soil under constant loading is studied by introducing continuous drainage boundary.The numerical solution is derived by using finite difference method and its correctness is assessed by comparing with existing analytical and numerical solutions.Based on the present solution,the effects of interface parameters,stress ratios(i.e.,final effective stress over initial effective stress,N_(σ))and the ratio c_(c)/c_(k)of compression index to permeability index on the consolidation behavior of soil are studied in detail.The results show that,the characteristics of one-dimensional nonlinear consolidation of soil are not only related to c_(c)/c_(k)and N_(σ),but also related to boundary conditions.In the engineering practice,the soil drainage rate of consolidation process can be designed by adjusting the values of interface parameters.
基金Project(50490274) supported by the National Natural Science Foundation of ChinaProject(20050533035) supported by the Specialized Research Fund for the Doctoral Program of Higher Education of ChinaProject(1343-77236) supported by the Doctor Degree Paper Innovation Engineering of Central South University, China
文摘With the help of similar material simulation test,time series system for induced caving of roof in continuous mining under complex backfill in ore body No.92 of Tongkeng Tin Mine was studied. According to the similarity theory,a two-dimensional similar simulation test-bed was constructed. The stress and displacement that change along with the advance of mining were acquired and analyzed automatically by data system. The processes of continuous mining of ore-block in 5 intervals and artificial induced caving of roof were simulated. The results of the test show that ore body remained as safety roof in thickness of 15 m guarantees the safe advance of stoping work face. Caving of safety roof puts in practice at the first two mining intervals when the third interval of continuous mining is finished,and one interval as the safety distance should be kept all the time between stopping and caving. While mining in the last interval,pre-slotting should be implemented first of all,and the roof of the last two mining intervals is caved simultaneously. Only this kind of time series system can be an efficient and safe way for induced caving of roof in continuous mining.
基金Project(200809123) supported by the National Natural Science Foundation of China
文摘A high speed steel composite roll billet was fabricated, which is regular in shape, smooth in surface, slight in trace, compact in internal structure, free of slag inclusion, shrinkage cavity, cracks and other flaws, and good in macro quality of junction surface using a vertical continuous casting machine. The interface zone microstructure of bimetallic in billet of high speed steel composite roll was analyzed by metallurgical microscope(OM), X-ray diffractmeter(XRD), scanning electron microscopy(SEM) and energy-dispersive X-ray analysis(EDS). The results indicate that the microstructure of roll billet is composed of chilled solidified layer, dendrite zone, interfacial zone of bimetal and core material zone. The microstructure of outer shell material is composed of martensite + bainite + residual austenite + some small labyrinth-shape, small-short lath-shape, or dollop-shape eutectic carbides. The microstructure of core material is slice-shape pearlite and a little ferrite along boundary of cells. The interface region microstructure of bimetallic composite roll consists of diffusion region, chilled solidified layer and columnar grain region.
基金Project(50634030) supported by the National Natural Science Foundation of ChinaProject(20090042120005) supported by the Doctorate Foundation of the Ministry of Education of ChinaProject(2006CB605208-1) supported by the State Basic Research Program of China
文摘Deformation behavior of slab at the straightening stage during continuous casting was simulated by the explicit dynamic finite element method,and the stress distribution along the width direction of the slab and its change regularity at slab center during continuous casting were obtained.The influence of distribution and change of stress on the propagation of longitudinal cracks on slab surface was discussed.The results show that the tensional stress appears on slab surface at the inner arc side and the compressive stress appears on slab surface at the outer arc side at stages 6-8 in straightening zone during continuous casting.Longitudinal cracks generally appear on slab top surface and do not appear on slab bottom surface,which are also observed in industry.
基金Project(51975164)supported by the National Natural Science Foundation of ChinaProject(2019-KYYWF-0205)supported by the Fundamental Research Foundation for Universities of Heilongjiang Province,China。
文摘In order to meet the precision requirements and tracking performance of the continuous rotary motor electro-hydraulic servo system under unknown strong non-linear and uncertain strong disturbance factors,such as dynamic uncertainty and parameter perturbation,an improved active disturbance rejection control(ADRC)strategy was proposed.The state space model of the fifth order closed-loop system was established based on the principle of valve-controlled hydraulic motor.Then the three parts of ADRC were improved by parameter perturbation and external disturbance;the fast tracking differentiator was introduced into linear and non-linear combinations;the nonlinear state error feedback was proposed using synovial control;the extended state observer was determined by nonlinear compensation.In addition,the grey wolf algorithm was used to set the parameters of the three parts.The simulation and experimental results show that the improved ADRC can realize the system frequency 12 Hz when the tracking accuracy and response speed meet the requirements of double ten indexes,which lay foundation for the motor application.
文摘The 2024/3003 aluminum gradient alloys are prepared by semi continuous casting. The influences of throttle bore diameter of embedded nozzle and temperature of internal melt on composition distribution, macrostructure, hardness are analyzed, and the stability of gradient distribution of composition, macrostructure and hardness along the axial direction of the ingot is also studied. The results show that diffe rent composition profiles can be achieved by adjusting the processing parameters; the volume fraction of inner alloy in the ingot can be increased by enlarging the throttle bore diameter and elevating the temperature of inner melt; quasi steady solidification can be realized within 20 s during cast processing, and consistent quality ingot is obtained by controlling the casting speed and liquid height of inner melt.
基金Projects(41502283,41772309)supported by the National Natural Science Foundation of ChinaProject(2017YFC1501302)supported by the National Key Research and Development Program of ChinaProject(2017ACA102)supported by the Major Program of Technological Innovation of Hubei Province,China。
文摘In this study,the micro-failure process and failure mechanism of a typical brittle rock under uniaxial compression are investigated via continuous real-time measurement of wave velocities.The experimental results indicate that the evolutions of wave velocities became progressively anisotropic under uniaxial loading due to the direction-dependent development of micro-damage.A wave velocity model considering the inner anisotropic crack evolution is proposed to accurately describe the variations of wave velocities during uniaxial compression testing.Based on which,the effective elastic parameters are inferred by a transverse isotropic constitutive model,and the evolutions of the crack density are inversed using a self-consistent damage model.It is found that the propagation of axial cracks dominates the failure process of brittle rock under uniaxial loading and oblique shear cracks develop with the appearance of macrocrack.
文摘A new mechanics model, which reveals additional longitudinal force transmission between the continuously welded rails and the bridges, is established on the fact that the influence of the mutual relative displacement (among) the rail, the sleeper and the beam is taken into account. An example is presented and numerical results are compared. The results show that the additional longitudinal forces calculated with the new model are less than those of the previous, especially in the case of the flexible pier bridges. The new model is also suitable for the analysis of the additional longitudinal force transmission between rails and bridges of ballastless track with small resistance fasteners without taking the sleeper displacement into account, and compared with the ballast bridges, the ballastless bridges have a much stronger additional longitudinal force transmission between the continuously welded rails and the bridges.
基金Project(61072087) supported by the National Natural Science Foundation of ChinaProject(2011-035) supported by Shanxi Province Scholarship Foundation, China+2 种基金Project(20120010) supported by Universities High-tech Foundation Projects, ChinaProject (2013021016-1) supported by the Youth Science and Technology Foundation of Shanxi Province, ChinaProjects(2013011016-1, 2012011014-1) supported by the Natural Science Foundation of Shanxi Province, China
文摘Enhanced speech based on the traditional wavelet threshold function had auditory oscillation distortion and the low signal-to-noise ratio (SNR). In order to solve these problems, a new continuous differentiable threshold function for speech enhancement was presented. Firstly, the function adopted narrow threshold areas, preserved the smaller signal speech, and improved the speech quality; secondly, based on the properties of the continuous differentiable and non-fixed deviation, each area function was attained gradually by using the method of mathematical derivation. It ensured that enhanced speech was continuous and smooth; it removed the auditory oscillation distortion; finally, combined with the Bark wavelet packets, it further improved human auditory perception. Experimental results show that the segmental SNR and PESQ (perceptual evaluation of speech quality) of the enhanced speech using this method increase effectively, compared with the existing speech enhancement algorithms based on wavelet threshold.
基金Project(CSTC2007BB4216) supported by the Natural Science Foundation of Chongqing,China
文摘To understand the solidification behavior of austenitic stainless steel in rotary electromagnetic-field, the influence of low-frequency rotary electromagnetic-field on solidification structure of austenitic stainless steel in horizontal continuous casting was investigated based on industrial experiments. The results show that the solidification structure of austenitic stainless steel can be remarkably refined, the central porosity and shrinkage cavity can be remarkably decreased, and the equiaxed grains zone are enlarged by means of application of appropriate low-frequency electromagnetic-field parameters. The industrial trials verify that the stirring intensity of austenitic stainless steel should be higher compared with that of plain carbon steel. Electromagnetic stirring affects the macrostructure even if the average magnetic flux density of the electromagnetic stirring reaches 90 mT (amplitude reaches 141 mT) with the frequency of 3-4 Hz. Due to a higher viscosity, rotating speed of molten stainless steel is 20%-30% lower than that of molten carbon steel in the same magnetic flux density.
基金Project(51874153) supported by the National Natural Science Foundation of ChinaProject(LZB2021003) supported by Fundamental Research Funds for the Central UniversitiesDHU Distinguished Young Professor Program,China。
文摘To recycle arsenic from an As-Sb fly ash,a newly continuous reductive method for obtaining elemental As with additive of PbO was proposed.In the first reduction stage,PbO promoted the As segregation from the As-Sb fly ash,due to which most As volatilized and Sb retained in roasted residues in phases of As-Sb-Pb-O and As-Sb-Pb alloy.With the increase of PbO and reductant amounts,the Sb fixation rate increased in the first reduction stage,and further the Sb content in the elemental As obtained from the second reduction stage decreased.After being roasted for 30 min at 550℃ with the addition of 20%activated carbon and 12%PbO in the first reduction stage,the As volatilization rate and Sb fixation rate from the As-Sb fly ash reached 92.86%and 79.38%,respectively.Then through the second reduction of the volatile matters at 650℃,the As and Sb contents in the obtained elemental As reached 99.07 wt%and 0.22 wt%respectively,indicating that the obtained As could be used to prepare high purity As,thereby rendering the As-Sb fly ash recycling.
基金Projects(40772156, 41072179) supported by the National Natural Science Foundation of China
文摘An online method using continuous flow isotope ratio mass spectrometry (CF-IRMS) interfaced with a Gasbench Ⅱ was presented to determine chlorine stable isotope composition. Silver chloride (AgCl) was quantitatively derived from chloride by using silver nitrate (AgNO3), and then was reacted with iodomethane (CH3Ⅰ) to produce methyl chloride (CH3Cl). A GasBench Ⅱ equipped with a PoraPlot Q column was used to separate CH3Cl from any other gas species. Finally, chlorine stable isotope analysis was carried out on CH3Cl introduced to the IRMS in a helium stream via an active open split. The minimum amount of Cl used in this method is of the order of 1.4 μmol. Inter-laboratory and inter-technique comparisons show that the total uncertainty incorporating both the precision and accuracy of this method is better than 0.007%. Furthermore, ten seawaters sampled from different locations have a narrow δ37Cl value range from -0.008% to 0.010%, with a mean value of (0.000±0.006)%. This supports the assumption that any seawater can be representative of standard mean ocean chloride (SMOC) and used as an international reference material.