A discrete differential evolution algorithm combined with the branch and bound method is developed to solve the integer linear bilevel programming problems, in which both upper level and lower level variables are forc...A discrete differential evolution algorithm combined with the branch and bound method is developed to solve the integer linear bilevel programming problems, in which both upper level and lower level variables are forced to be integer. An integer coding for upper level variables is adopted, and then a discrete differential evolution algorithm with an improved feasibility-based comparison is developed to directly explore the integer solution at the upper level. For a given upper level integer variable, the lower level integer programming problem is solved by the existing branch and bound algorithm to obtain the optimal integer solution at the lower level. In the same framework of the algorithm, two other constraint handling methods, i.e. the penalty function method and the feasibility-based comparison method are also tested. The experimental results demonstrate that the discrete differential evolution algorithm with different constraint handling methods is effective in finding the global optimal integer solutions, but the improved constraint handling method performs better than two compared constraint handling methods.展开更多
Task scheduling for electro-magnetic detection satellite is a typical combinatorial optimization problem. The count of constraints that need to be taken into account is of large scale. An algorithm combined integer pr...Task scheduling for electro-magnetic detection satellite is a typical combinatorial optimization problem. The count of constraints that need to be taken into account is of large scale. An algorithm combined integer programming with constraint programming is presented. This algorithm is deployed in this problem through two steps. The first step is to decompose the original problem into master and sub-problem using the logic-based Benders decomposition; then a circus combines master and sub-problem solving process together, and the connection between them is general Benders cut. This hybrid algorithm is tested by a set of derived experiments. The result is compared with corresponding outcomes generated by the strength Pareto evolutionary algorithm and the pure constraint programming solver GECODE, which is an open source software. These tests and comparisons yield promising effect.展开更多
基金supported by the Natural Science Basic Research Plan in Shaanxi Province of China(2013JM1022)the Fundamental Research Funds for the Central Universities(K50511700004)
文摘A discrete differential evolution algorithm combined with the branch and bound method is developed to solve the integer linear bilevel programming problems, in which both upper level and lower level variables are forced to be integer. An integer coding for upper level variables is adopted, and then a discrete differential evolution algorithm with an improved feasibility-based comparison is developed to directly explore the integer solution at the upper level. For a given upper level integer variable, the lower level integer programming problem is solved by the existing branch and bound algorithm to obtain the optimal integer solution at the lower level. In the same framework of the algorithm, two other constraint handling methods, i.e. the penalty function method and the feasibility-based comparison method are also tested. The experimental results demonstrate that the discrete differential evolution algorithm with different constraint handling methods is effective in finding the global optimal integer solutions, but the improved constraint handling method performs better than two compared constraint handling methods.
基金supported by the National Security Fundamental Research Foundation of China (61361)the National Natural Science Foundation of China (61104180)
文摘Task scheduling for electro-magnetic detection satellite is a typical combinatorial optimization problem. The count of constraints that need to be taken into account is of large scale. An algorithm combined integer programming with constraint programming is presented. This algorithm is deployed in this problem through two steps. The first step is to decompose the original problem into master and sub-problem using the logic-based Benders decomposition; then a circus combines master and sub-problem solving process together, and the connection between them is general Benders cut. This hybrid algorithm is tested by a set of derived experiments. The result is compared with corresponding outcomes generated by the strength Pareto evolutionary algorithm and the pure constraint programming solver GECODE, which is an open source software. These tests and comparisons yield promising effect.