期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
基于两阶段搜索与动态资源分配的约束多目标进化算法 被引量:4
1
作者 马勇健 史旭华 王佩瑶 《计算机应用》 CSCD 北大核心 2024年第1期269-277,共9页
解决约束多目标优化问题(CMOP)的难点在于平衡目标优化和约束满足的同时兼顾解集的收敛性和多样性。为解决具有大型不可行区域和较小可行区域的复杂约束多目标优化问题,提出一种基于两阶段搜索与动态资源分配的约束多目标进化算法(TSDRA... 解决约束多目标优化问题(CMOP)的难点在于平衡目标优化和约束满足的同时兼顾解集的收敛性和多样性。为解决具有大型不可行区域和较小可行区域的复杂约束多目标优化问题,提出一种基于两阶段搜索与动态资源分配的约束多目标进化算法(TSDRA)。该算法在第一阶段通过忽略约束跨越不可行区域;然后在第二阶段通过动态分配两种计算资源协调局部开发和全局探索,兼顾算法的收敛性和多样性。在LIRCMOP和MW系列测试问题上进行的仿真实验结果表明,与四个代表性的算法CMOEA-MS(Constrained Multi-Objective Evolutionary Algorithm with Multiple Stages)、ToP(Two-phase)、PPS(Push and Pull Search)和MSCMO(Multi Stage Constrained Multi-Objective evolutionary algorithm)相比,所提算法在反转世代距离(IGD)和超体积(HV)上得到了更优异的结果。在LIRCMOP系列测试问题上,TSDRA获得了10个最佳的IGD值和9个最佳的HV值;在MW系列测试问题上,TSDRA获得了9个最佳的IGD值和10个最佳的HV值,表明所提算法可以更有效地解决具有大型不可行区域和较小可行区域的问题。 展开更多
关键词 约束多目标优化问题 两阶段搜索 资源分配 非支配排序 收敛性 多样性
在线阅读 下载PDF
基于双阶段搜索的约束进化多任务优化算法 被引量:2
2
作者 赵楷文 王鹏 童向荣 《计算机应用》 CSCD 北大核心 2024年第5期1415-1422,共8页
高效地平衡算法的多样性、收敛性和可行性是求解约束多目标优化问题(CMOP)的关键;然而,复杂约束的出现给该类问题的求解带来了更大的挑战。因此,提出一种基于双阶段搜索的约束进化多任务优化算法(TEMA),通过完成两个协同进化的任务实现... 高效地平衡算法的多样性、收敛性和可行性是求解约束多目标优化问题(CMOP)的关键;然而,复杂约束的出现给该类问题的求解带来了更大的挑战。因此,提出一种基于双阶段搜索的约束进化多任务优化算法(TEMA),通过完成两个协同进化的任务实现多样性、收敛性和可行性之间的平衡。首先,进化过程由探索和利用两个阶段组成,分别致力于加强算法在目标空间的广泛探索能力和高效搜索能力;其次,设计一种动态约束处理策略以平衡种群中可行解的比例,从而增强算法在可行区域的探索能力;再次,提出一种回退搜索策略,利用无约束Pareto前沿所包含的信息指导算法向约束Pareto前沿快速收敛;最后,在两个基准测试集中的23个问题上进行对比实验。实验结果表明,TEMA分别在14个和13个测试问题上取得最优反世代距离(IGD)值和超体积(HV)值,体现出明显优势。 展开更多
关键词 约束多目标优化问题 进化多任务优化算法 双阶段进化机制 进化算法 约束处理技术
在线阅读 下载PDF
一种面向移动边缘计算的多用户细粒度任务卸载调度方法 被引量:11
3
作者 崔玉亚 张德干 +2 位作者 张婷 杨鹏 朱浩丽 《电子学报》 EI CAS CSCD 北大核心 2021年第11期2202-2207,共6页
在移动边缘计算中(Mobile Edge Computing,MEC),任务卸载可以有效地解决移动设备资源受限的问题,但是将全部任务都卸载到边缘服务器并非最优.本文提出一种面向移动边缘计算的多用户细粒度任务卸载调度新方法,把计算任务看作一个有向无环... 在移动边缘计算中(Mobile Edge Computing,MEC),任务卸载可以有效地解决移动设备资源受限的问题,但是将全部任务都卸载到边缘服务器并非最优.本文提出一种面向移动边缘计算的多用户细粒度任务卸载调度新方法,把计算任务看作一个有向无环图(Directed Acyclic Graph,DAG),对节点的执行位置和调度顺序进行了优化决策.考虑系统的延迟把计算卸载看作一个约束多目标优化问题(Constrained Multi-object Optimization Problem,CMOP),提出了一个改进的NSGA-Ⅱ算法来解决CMOP.所提出的算法能够实现本地和边缘的并行处理从而减少延迟.实验结果表明,算法能够在实际应用程序中做出最优决策. 展开更多
关键词 移动边缘计算 计算卸载 约束多目标优化问题 细粒度卸载调度 NSGA-Ⅱ
在线阅读 下载PDF
基于协同进化的约束多目标优化算法 被引量:2
4
作者 张祥飞 鲁宇明 张平生 《计算机应用》 CSCD 北大核心 2021年第7期2012-2018,共7页
针对约束多目标优化算法存在难以有效地兼顾收敛性和多样性的问题,提出一种基于协同进化的约束多目标优化算法。第一阶段,通过基于稳态演化的可行解搜索方式得到一个具有一定数量可行解的种群;第二阶段,将这个种群拆分为两个子种群,并... 针对约束多目标优化算法存在难以有效地兼顾收敛性和多样性的问题,提出一种基于协同进化的约束多目标优化算法。第一阶段,通过基于稳态演化的可行解搜索方式得到一个具有一定数量可行解的种群;第二阶段,将这个种群拆分为两个子种群,并通过双子种群协同进化的方式实现对收敛性和多样性的兼顾;最后采用标准约束多目标优化问题CF1~CF7、DOC1~DOC7和实际工程问题进行仿真实验,以测试所提算法的求解性能。实验结果表明,与基于约束支配准则的非支配排序遗传算法(NSGA-Ⅱ-CDP)、两阶段算法(ToP)、推拉搜索算法(PPS)和约束多目标优化的双存档进化算法(C-TAEA)相比,所提算法在反向世代距离(IGD)和超体积(HV)两个指标上均取得了良好的结果,说明所提算法可以有效地兼顾收敛性和多样性。 展开更多
关键词 约束多目标优化问题 双种群 协同进化 差分进化 PARETO前沿
在线阅读 下载PDF
约束多目标进化算法研究进展 被引量:1
5
作者 朱亚文 周红标 +1 位作者 李杨 徐浩渊 《计算机应用研究》 CSCD 北大核心 2022年第9期2582-2590,2602,共10页
约束多目标进化算法(CMOEAs)能够同时处理多个相互冲突的目标函数和约束条件,引导种群逼向可行域的最优解,受到了研究者的广泛重视。首先介绍了约束多目标优化问题(CMOPs)的相关定义和多目标进化算法(MOEAs)的三种分类;其次,系统地分析... 约束多目标进化算法(CMOEAs)能够同时处理多个相互冲突的目标函数和约束条件,引导种群逼向可行域的最优解,受到了研究者的广泛重视。首先介绍了约束多目标优化问题(CMOPs)的相关定义和多目标进化算法(MOEAs)的三种分类;其次,系统地分析了当前CMOEAs中约束处理机制,凝练出当前主要的四种约束处理方法;然后,从基于支配、基于指标、基于分解三个方面对CMOEAs的研究进展进行了详细综述;最后,指明了CMOEAs存在的挑战和未来研究方向。 展开更多
关键词 约束多目标优化问题 约束多目标进化算法 基于支配 基于指标 基于分解
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部