The main aim of this paper is to discuss the following two problems: Problem I: Given X ∈ Hn×m (the set of all n×m quaternion matrices), A = diag(λ1,…, λm) EEEEE Hm×m, find A ∈ BSHn×n≥such th...The main aim of this paper is to discuss the following two problems: Problem I: Given X ∈ Hn×m (the set of all n×m quaternion matrices), A = diag(λ1,…, λm) EEEEE Hm×m, find A ∈ BSHn×n≥such that AX = X(?), where BSHn×n≥ denotes the set of all n×n quaternion matrices which are bi-self-conjugate and nonnegative definite. Problem Ⅱ2= Given B ∈ Hn×m, find B ∈ SE such that ||B-B||Q = minAE∈=sE ||B-A||Q, where SE is the solution set of problem I , || ·||Q is the quaternion matrix norm. The necessary and sufficient conditions for SE being nonempty are obtained. The general form of elements in SE and the expression of the unique solution B of problem Ⅱ are given.展开更多
基金This work is supported by the NSF of China (10471039, 10271043) and NSF of Zhejiang Province (M103087).
文摘The main aim of this paper is to discuss the following two problems: Problem I: Given X ∈ Hn×m (the set of all n×m quaternion matrices), A = diag(λ1,…, λm) EEEEE Hm×m, find A ∈ BSHn×n≥such that AX = X(?), where BSHn×n≥ denotes the set of all n×n quaternion matrices which are bi-self-conjugate and nonnegative definite. Problem Ⅱ2= Given B ∈ Hn×m, find B ∈ SE such that ||B-B||Q = minAE∈=sE ||B-A||Q, where SE is the solution set of problem I , || ·||Q is the quaternion matrix norm. The necessary and sufficient conditions for SE being nonempty are obtained. The general form of elements in SE and the expression of the unique solution B of problem Ⅱ are given.