最近,基于自注意力的Transformer结构在不同领域的一系列任务上表现出非常好的性能。探索了基于Transformer编码器和LAS(listen,attend and spell)解码器的Transformer-LAS语音识别模型的效果,并针对Transformer不善于捕捉局部信息的问...最近,基于自注意力的Transformer结构在不同领域的一系列任务上表现出非常好的性能。探索了基于Transformer编码器和LAS(listen,attend and spell)解码器的Transformer-LAS语音识别模型的效果,并针对Transformer不善于捕捉局部信息的问题,使用Conformer代替Transformer,提出Conformer-LAS模型。由于Attention过于灵活的对齐方式,使得在嘈杂环境中的效果急剧下降,采用连接时序分类(connectionist temporal classification,CTC)辅助训练以加快收敛,并加入音素级别的中间CTC损失联合优化,提出了效果更好的Conformer-LAS-CTC语音识别模型。在开源中文普通话Aishell-1数据集上对提出来的模型进行验证,实验结果表明,Conformer-LAS-CTC相对于采用的基线BLSTM-LAS和Transformer-LAS模型在测试集上的字错率分别相对降低了22.58%和48.76%,模型最终字错误率为4.54%。展开更多
针对单通道语音增强中主流编解码结构面临的声学特征提取不充分、通道信息丢失和幅度相位补偿困难等问题,提出一种融合不同维度语音特征的异构双分支解码单通道语音增强模型——HDBMV(Heterogeneous DualBranch with Multi-View)。该模...针对单通道语音增强中主流编解码结构面临的声学特征提取不充分、通道信息丢失和幅度相位补偿困难等问题,提出一种融合不同维度语音特征的异构双分支解码单通道语音增强模型——HDBMV(Heterogeneous DualBranch with Multi-View)。该模型通过信息融合编码器(IFE)、时频残差Conformer(TFRC)模块、多视角注意力(MVA)模块和异构双分支解码器(HDBD)等机制,提升单通道语音增强的性能。首先,IFE联合处理振幅与复数特征,捕捉全局依赖和局部相关,生成紧凑的特征表示;其次,TFRC模块有效捕捉时间维度和频域维度上的相关性,同时降低计算复杂度;再次,MVA模块重构通道域和时频域信息,进一步增强模型对信息的多视角多层次的表征能力;最后,HDBD分别处理幅度特征和细化复数特征,解决幅度相位补偿问题,提升解码鲁棒性。实验结果表明,HDBMV在公开数据集VoiceBank+DEMAND、大数据集DNS Challenge 2020和自建的藏语数据集BodSpeDB上的语音质量感知评估(PESQ)分别达到了3.00、3.12和2.09,短时目标可理解度(STOI)分别达到了0.96、0.97和0.81。可见,HDBMV以最小的参数量和较高的计算效率获得了最佳的语音增强性能和较强的泛化能力。展开更多
吉林大学计算机科学与技术学院2022级博士研究生杨雨欣为第一作者的论文“Ensemble Conformal Predictor (En CP):A New Conformal Predictor with Robustness Guarantees Against Data Poisoning Attacks”被IEEE Symposium on Securit...吉林大学计算机科学与技术学院2022级博士研究生杨雨欣为第一作者的论文“Ensemble Conformal Predictor (En CP):A New Conformal Predictor with Robustness Guarantees Against Data Poisoning Attacks”被IEEE Symposium on Security and Privacy (IEEE S&P 2026)接收。作者还包括杨雨欣的指导教师教授李强、吉林大学人工智能学院博士研究生封润洋,共同通信作者是美国丰田工业大学芝加哥分校教授Liren Shan和美国伊利诺伊理工大学教授Binghui Wang。展开更多
文摘最近,基于自注意力的Transformer结构在不同领域的一系列任务上表现出非常好的性能。探索了基于Transformer编码器和LAS(listen,attend and spell)解码器的Transformer-LAS语音识别模型的效果,并针对Transformer不善于捕捉局部信息的问题,使用Conformer代替Transformer,提出Conformer-LAS模型。由于Attention过于灵活的对齐方式,使得在嘈杂环境中的效果急剧下降,采用连接时序分类(connectionist temporal classification,CTC)辅助训练以加快收敛,并加入音素级别的中间CTC损失联合优化,提出了效果更好的Conformer-LAS-CTC语音识别模型。在开源中文普通话Aishell-1数据集上对提出来的模型进行验证,实验结果表明,Conformer-LAS-CTC相对于采用的基线BLSTM-LAS和Transformer-LAS模型在测试集上的字错率分别相对降低了22.58%和48.76%,模型最终字错误率为4.54%。
文摘吉林大学计算机科学与技术学院2022级博士研究生杨雨欣为第一作者的论文“Ensemble Conformal Predictor (En CP):A New Conformal Predictor with Robustness Guarantees Against Data Poisoning Attacks”被IEEE Symposium on Security and Privacy (IEEE S&P 2026)接收。作者还包括杨雨欣的指导教师教授李强、吉林大学人工智能学院博士研究生封润洋,共同通信作者是美国丰田工业大学芝加哥分校教授Liren Shan和美国伊利诺伊理工大学教授Binghui Wang。