Experiments on shaped charge penetration into high and ultrahigh strength steel-fiber reactive powder concrete(RPC) targets were performed in this paper.Results show that the variation of penetration depth and crater ...Experiments on shaped charge penetration into high and ultrahigh strength steel-fiber reactive powder concrete(RPC) targets were performed in this paper.Results show that the variation of penetration depth and crater diameter with concrete strength is different from that of shaped charge penetration into normal strength concrete(NSC).The crater diameter of RPC is smaller than that of NSC penetrated by the shaped charge.The jet particles are strongly disturbed and hardly reach the crater bottom because they pass through the narrow channel formed by jet penetration into the RPC.The effects of radial drift velocity and gap effects of jet particles for a shaped charge penetration into RFC target are discussed.Moreover,a theoretical model is presented to describe the penetration of shaped charge into RPC target.As the concrete strength increases,the penetration resistance increases and the entrance crater diameter decreases.Given the drift velocity and narrow crater channel,the low-velocity jet particles can hardly reach the crater bottom to increase the penetration depth.Moreover,the narrow channel has a stronger interference to the jet particles with increasing concrete strength;hence,the gap effects must be considered.The drift velocity and gap effects,which are the same as penetration resistance,also have significant effects during the process of shaped charge penetration into ultrahigh-strength concrete,The crater profiles are calculated through a theoretical model,and the results are in good agreement with the experiments.展开更多
Based on the characteristic expanded hole of a shaped charge jet(SCJ) for target penetration and the reflow characteristics of liquids,the liquid-filled structure of a target disturbs the stability of the SCJ acquired...Based on the characteristic expanded hole of a shaped charge jet(SCJ) for target penetration and the reflow characteristics of liquids,the liquid-filled structure of a target disturbs the stability of the SCJ acquired in two independent parts.The interference jet speed interval,the escape jet speed interval,and the surplus depth are calculated on the basis of the virtual origin theory.The experimental results,including the velocity of the escaped jet tip and the surplus depth of penetration,are consistent with the theoretical results.Experiments show that the theory can describe the interaction process of the target with a shaped charge jet.展开更多
Penetration characteristic(size and shape of penetration craters made in high hardness ARMSTAL 30PM steel) of shaped charge jets formed after detonations of modified PG-7VM warheads was analyzed in the article. Modifi...Penetration characteristic(size and shape of penetration craters made in high hardness ARMSTAL 30PM steel) of shaped charge jets formed after detonations of modified PG-7VM warheads was analyzed in the article. Modifications consisted in removing the frontal part of the grenade(fuse, ballistic cap and conductive cone) and introducing of the liner cavity filling made of polyacetal copolymer POM-C. The filings in the form of solid cones with three different heights(33%, 66% and 100% of H-the height of original PG-7VM liner) were placed inside of the hollow cone shaped charge liner. As opposed to the vast majority of previously published works(in which warhead optimization studies were focused on increasing of the depth of penetration in rolled homogeneous armor steel) the main aim of the presented modifications was to maximize the damage ratio(diameters of craters, inlet and outlet holes) of target perforated by shaped charge jet at the cost of the loss of part of the jet penetration capability. According to the best knowledge of the authors such approach to the use of the old PG-7VM warheads has not been analyzed so far. Taking into consideration high stock levels of PG-7VM warheads, and the fact that they are continuously being replaced by more efficient and more sophisticated high-explosive anti-tank warheads, it seems reasonable to look for alternate applications of the warheads withdrawn from the service. Thanks to the introduction of proposed modifications the warheads could be used by special forces or other assault units as directional mines or statically detonated cutting shaped charges as well as by combat engineers as universal charges used in various types of engineering or sapper works. The research included experimental penetration tests and their numerical reproduction in the LS-Dyna software with the simulation methodology defined and validated in previous works of the authors.Small differences(average error = 10-20%) were identified between the experimental and numerical results(dimensions of craters made in steel targets were compared) what confirmed the reliability of the modelling methodology and enabled its use for further optimization of the shapes of fillings. Within the analyzed variants of warheads modifications maximum diameters of penetration craters were obtained for the filling of the height of h = 2/3H. The diameters of holes in individual steel plates were increased by 164%, 70%, 65%(for the first, second and third plate, respectively) in relation to the variant without filling. The results of the study indicated that with the use of different materials of fillings and their various heights it is possible to control the shape of penetration craters pierced in the steel targets.展开更多
Imaging the spatial precession cone-shaped targets with narrowband radar is a new technical approach in mid-course recognition problem. However, most existing time-frequency methods still have some inevitable deficien...Imaging the spatial precession cone-shaped targets with narrowband radar is a new technical approach in mid-course recognition problem. However, most existing time-frequency methods still have some inevitable deficiencies for extracting microDoppler information in practical applications, which leads to blurring of the image. A new narrowband radar imaging algorithm for the precession cone-shaped targets is proposed. The instantaneous frequency of each scattering point is gained by using the improved Hilbert-Huang transform, then the positions of scattering points in the parameter domain are reconstructed. Numerical simulation and experiment results confirm the effectiveness and high precision of the proposed algorithm.展开更多
In this paper, we consider the problem of irregular shapes tracking for multiple extended targets by introducing the Gaussian surface matrix(GSM) into the framework of the random finite set(RFS) theory. The Gaussi...In this paper, we consider the problem of irregular shapes tracking for multiple extended targets by introducing the Gaussian surface matrix(GSM) into the framework of the random finite set(RFS) theory. The Gaussian surface function is constructed first by the measurements, and it is used to define the GSM via a mapping function. We then integrate the GSM with the probability hypothesis density(PHD) filter, the Bayesian recursion formulas of GSM-PHD are derived and the Gaussian mixture implementation is employed to obtain the closed-form solutions. Moreover, the estimated shapes are designed to guide the measurement set sub-partition, which can cope with the problem of the spatially close target tracking. Simulation results show that the proposed algorithm can effectively estimate irregular target shapes and exhibit good robustness in cross extended target tracking.展开更多
针对道路交通环境中车辆和行人目标较小或被遮挡导致的检测精度低以及误检、漏检问题,提出道路目标检测算法RO-YOLOv9。增加小目标检测层,增强算法对小目标的特征学习能力。设计双向与自适应尺度融合特征金字塔网络(bidirectional and a...针对道路交通环境中车辆和行人目标较小或被遮挡导致的检测精度低以及误检、漏检问题,提出道路目标检测算法RO-YOLOv9。增加小目标检测层,增强算法对小目标的特征学习能力。设计双向与自适应尺度融合特征金字塔网络(bidirectional and adaptive scale fusion feature pyramid network,BiASF-FPN)结构,优化多尺度特征融合,保证算法有效捕捉从小尺度到大尺度目标的详细信息。提出OR-RepN4模块,通过重参数化策略,复杂算法结构简单化,提高推理速度。引用Shape-NWD(shape neighborhood weighted decomposition)损失函数,专注边界框形状与尺寸,采用归一化高斯Wasserstein距离平滑回归,实现跨尺度不变性,降低小尺度与遮挡目标的检测误差。实验结果表明,在优化后的SODA10M和BDD100K数据集下,RO-YOLOv9算法的mAP@0.5(mean average precision)分别达到68.1%和56.8%,比YLOLOv9算法提高5.6个百分点和4.4个百分点,并且检测帧率分别达到了55.3帧/s和54.2帧/s,达到检测精度和检测速度的平衡。展开更多
基金supported by the Natural Science Foundation of China through Grant No.11702144。
文摘Experiments on shaped charge penetration into high and ultrahigh strength steel-fiber reactive powder concrete(RPC) targets were performed in this paper.Results show that the variation of penetration depth and crater diameter with concrete strength is different from that of shaped charge penetration into normal strength concrete(NSC).The crater diameter of RPC is smaller than that of NSC penetrated by the shaped charge.The jet particles are strongly disturbed and hardly reach the crater bottom because they pass through the narrow channel formed by jet penetration into the RPC.The effects of radial drift velocity and gap effects of jet particles for a shaped charge penetration into RFC target are discussed.Moreover,a theoretical model is presented to describe the penetration of shaped charge into RPC target.As the concrete strength increases,the penetration resistance increases and the entrance crater diameter decreases.Given the drift velocity and narrow crater channel,the low-velocity jet particles can hardly reach the crater bottom to increase the penetration depth.Moreover,the narrow channel has a stronger interference to the jet particles with increasing concrete strength;hence,the gap effects must be considered.The drift velocity and gap effects,which are the same as penetration resistance,also have significant effects during the process of shaped charge penetration into ultrahigh-strength concrete,The crater profiles are calculated through a theoretical model,and the results are in good agreement with the experiments.
基金supported by the National Natural Science Foundation of China (Grant No.11402122)the China Scholarship Council (201706845026)
文摘Based on the characteristic expanded hole of a shaped charge jet(SCJ) for target penetration and the reflow characteristics of liquids,the liquid-filled structure of a target disturbs the stability of the SCJ acquired in two independent parts.The interference jet speed interval,the escape jet speed interval,and the surplus depth are calculated on the basis of the virtual origin theory.The experimental results,including the velocity of the escaped jet tip and the surplus depth of penetration,are consistent with the theoretical results.Experiments show that the theory can describe the interaction process of the target with a shaped charge jet.
文摘Penetration characteristic(size and shape of penetration craters made in high hardness ARMSTAL 30PM steel) of shaped charge jets formed after detonations of modified PG-7VM warheads was analyzed in the article. Modifications consisted in removing the frontal part of the grenade(fuse, ballistic cap and conductive cone) and introducing of the liner cavity filling made of polyacetal copolymer POM-C. The filings in the form of solid cones with three different heights(33%, 66% and 100% of H-the height of original PG-7VM liner) were placed inside of the hollow cone shaped charge liner. As opposed to the vast majority of previously published works(in which warhead optimization studies were focused on increasing of the depth of penetration in rolled homogeneous armor steel) the main aim of the presented modifications was to maximize the damage ratio(diameters of craters, inlet and outlet holes) of target perforated by shaped charge jet at the cost of the loss of part of the jet penetration capability. According to the best knowledge of the authors such approach to the use of the old PG-7VM warheads has not been analyzed so far. Taking into consideration high stock levels of PG-7VM warheads, and the fact that they are continuously being replaced by more efficient and more sophisticated high-explosive anti-tank warheads, it seems reasonable to look for alternate applications of the warheads withdrawn from the service. Thanks to the introduction of proposed modifications the warheads could be used by special forces or other assault units as directional mines or statically detonated cutting shaped charges as well as by combat engineers as universal charges used in various types of engineering or sapper works. The research included experimental penetration tests and their numerical reproduction in the LS-Dyna software with the simulation methodology defined and validated in previous works of the authors.Small differences(average error = 10-20%) were identified between the experimental and numerical results(dimensions of craters made in steel targets were compared) what confirmed the reliability of the modelling methodology and enabled its use for further optimization of the shapes of fillings. Within the analyzed variants of warheads modifications maximum diameters of penetration craters were obtained for the filling of the height of h = 2/3H. The diameters of holes in individual steel plates were increased by 164%, 70%, 65%(for the first, second and third plate, respectively) in relation to the variant without filling. The results of the study indicated that with the use of different materials of fillings and their various heights it is possible to control the shape of penetration craters pierced in the steel targets.
基金supported by the China National Funds for Distinguished Young Scientists(61025006)
文摘Imaging the spatial precession cone-shaped targets with narrowband radar is a new technical approach in mid-course recognition problem. However, most existing time-frequency methods still have some inevitable deficiencies for extracting microDoppler information in practical applications, which leads to blurring of the image. A new narrowband radar imaging algorithm for the precession cone-shaped targets is proposed. The instantaneous frequency of each scattering point is gained by using the improved Hilbert-Huang transform, then the positions of scattering points in the parameter domain are reconstructed. Numerical simulation and experiment results confirm the effectiveness and high precision of the proposed algorithm.
基金supported by the National Natural Science Foundation of China(6130501761304264+1 种基金61402203)the Natural Science Foundation of Jiangsu Province(BK20130154)
文摘In this paper, we consider the problem of irregular shapes tracking for multiple extended targets by introducing the Gaussian surface matrix(GSM) into the framework of the random finite set(RFS) theory. The Gaussian surface function is constructed first by the measurements, and it is used to define the GSM via a mapping function. We then integrate the GSM with the probability hypothesis density(PHD) filter, the Bayesian recursion formulas of GSM-PHD are derived and the Gaussian mixture implementation is employed to obtain the closed-form solutions. Moreover, the estimated shapes are designed to guide the measurement set sub-partition, which can cope with the problem of the spatially close target tracking. Simulation results show that the proposed algorithm can effectively estimate irregular target shapes and exhibit good robustness in cross extended target tracking.