In this paper,a new kind of flexible cone composed of the thin-walled plates based on space probecone docking mechanism for small-sized spacecraft is presented.The theoretical model of docking impact dynamics,which ta...In this paper,a new kind of flexible cone composed of the thin-walled plates based on space probecone docking mechanism for small-sized spacecraft is presented.The theoretical model of docking impact dynamics,which takes into account the additional stiffness terms,is derived based on Lagrange Analytical Mechanics theory and Hertz contact theory.Finite element method is employed for the discretization of the thin-walled plate.The results show that the traditional dynamic model without considering the additional stiffness terms will be difficult to reach steady state.The method proposed in this paper can correctly predict the dynamic behavior of the system.展开更多
Deep cone thickener (DCT) is the key equipment in cemented paste backfill (CPB), so it is essential to study the flocculation settling and thickening characteristics of the whole-tailings in DCT. Coupled with populati...Deep cone thickener (DCT) is the key equipment in cemented paste backfill (CPB), so it is essential to study the flocculation settling and thickening characteristics of the whole-tailings in DCT. Coupled with population balance model (PBM), computational fluid dynamics (CFD) was used to study the characteristics, namely particle size distribution (PSD) and underflow concentration in DCT. Based on actual production, the effects of rake rotational speed, feed rate and tailings slurry concentration were simulated and analyzed in a certain range. The PSD varied with rake rational speed, feed rate and tailings slurry concentration almost in the same trend, but the influence of feed rate was less than that of rake rational speed and tailings slurry concentration. The underflow concentration increased at first and then declined with rake rational speed and feed rate, but it rose and fell with the tailings slurry concentration. Finally, the optimal key parameters on the flocculation settling and thickening of the whole-tailings in DCT were obtained: rake rotational speed of 17 r/min, feed rate of 3.25 m^3/h and tailings slurry concentration of 20%, giving the reference values to the industrial production in Baishitamu Copper Mine.展开更多
基金Supported by the National Natural Science Foundation of China(91216201,11725211)
文摘In this paper,a new kind of flexible cone composed of the thin-walled plates based on space probecone docking mechanism for small-sized spacecraft is presented.The theoretical model of docking impact dynamics,which takes into account the additional stiffness terms,is derived based on Lagrange Analytical Mechanics theory and Hertz contact theory.Finite element method is employed for the discretization of the thin-walled plate.The results show that the traditional dynamic model without considering the additional stiffness terms will be difficult to reach steady state.The method proposed in this paper can correctly predict the dynamic behavior of the system.
基金Project(2016YFC0600709)supported by the National Key R&D Program of ChinaProjects(51574013,51774039)supported by the National Natural Science Foundation of ChinaProject(FRF-TP-17-024A1)supported by the Fundamental Research Funds for the Central Universities,China
文摘Deep cone thickener (DCT) is the key equipment in cemented paste backfill (CPB), so it is essential to study the flocculation settling and thickening characteristics of the whole-tailings in DCT. Coupled with population balance model (PBM), computational fluid dynamics (CFD) was used to study the characteristics, namely particle size distribution (PSD) and underflow concentration in DCT. Based on actual production, the effects of rake rotational speed, feed rate and tailings slurry concentration were simulated and analyzed in a certain range. The PSD varied with rake rational speed, feed rate and tailings slurry concentration almost in the same trend, but the influence of feed rate was less than that of rake rational speed and tailings slurry concentration. The underflow concentration increased at first and then declined with rake rational speed and feed rate, but it rose and fell with the tailings slurry concentration. Finally, the optimal key parameters on the flocculation settling and thickening of the whole-tailings in DCT were obtained: rake rotational speed of 17 r/min, feed rate of 3.25 m^3/h and tailings slurry concentration of 20%, giving the reference values to the industrial production in Baishitamu Copper Mine.