期刊文献+
共找到127篇文章
< 1 2 7 >
每页显示 20 50 100
Syntheses,proton conduction,and transport mechanism of two three‑dimensional lanthanum phosphite‑oxalates
1
作者 LU Yang HUANG Liangliang +2 位作者 ZHAO Wei WANG Xin BI Yanfeng 《无机化学学报》 北大核心 2025年第10期2127-2137,共11页
To develop proton-conducting materials with high hydrothermal and acid-base stability and to elucidate the proton-transport mechanism through visualized structural analysis,two new lanthanum phosphite-oxalates with 3D... To develop proton-conducting materials with high hydrothermal and acid-base stability and to elucidate the proton-transport mechanism through visualized structural analysis,two new lanthanum phosphite-oxalates with 3D frameworks,designated as[La(HPO_(3))(C_(2)O_(4))0.5(H_(2)O)_(2)](La‑1)and(C_(6)H_(16)N_(2))(H_(3)O)[La_(2)(H_(2)PO_(3))_(3)(C_(2)O_(4))_(3)(H_(2)O)](La‑2)(C_(6)H_(14)N_(2)=cis-2,6-dimethylpiperazine),were prepared by hydrothermal and solvothermal conduction,respectively.La‑1 was constructed with lanthanum phosphite 2D layers and C_(2)O_(4)^(2-)groups,whereas La‑2 was constructed with lanthanum oxalate 2D layers and H_(2)PO^(3-)groups.Alternating current(AC)impedance spectra indicate that the pro-ton conductivities of both compounds could reach 10^(-4)S·cm^(-1)and remain highly durable at 75℃and 98%of rela-tive humidity(RH).Due to the abundance of H-bonds in La‑2,theσof La‑2 was higher than that of La‑1.La‑1 exhibited excellent water and pH stability.CCDC:2439965,La‑1;443776,La‑2. 展开更多
关键词 OPEN-FRAMEWORK lanthanum phosphite-oxalate proton conductivity stability
在线阅读 下载PDF
Size-dependent heat conduction of thermal cellular structures: A surface-enriched multiscale method
2
作者 Xiaofeng Xu Junfeng Li +2 位作者 Xuanhao Wu Ling Ling Li Li 《Defence Technology(防务技术)》 2025年第7期50-67,共18页
This paper examined how microstructure influences the homogenized thermal conductivity of cellular structures and revealed a surface-induced size-dependent effect.This effect is linked to the porous microstructural fe... This paper examined how microstructure influences the homogenized thermal conductivity of cellular structures and revealed a surface-induced size-dependent effect.This effect is linked to the porous microstructural features of cellular structures,which stems from the degree of porosity and the distri-bution of the pores.Unlike the phonon-driven surface effect at the nanoscale,the macro-scale surface mechanism in thermal cellular structures is found to be the microstructure-induced changes in the heat conduction path based on fully resolved 3D numerical simulations.The surface region is determined by the microstructure,characterized by the intrinsic length.With the coupling between extrinsic and intrinsic length scales under the surface mechanism,a surface-enriched multiscale method was devel-oped to accurately capture the complex size-dependent thermal conductivity.The principle of scale separation required by classical multiscale methods is not necessary to be satisfied by the proposed multiscale method.The significant potential of the surface-enriched multiscale method was demon-strated through simulations of the effective thermal conductivity of a thin-walled metamaterial struc-ture.The surface-enriched multiscale method offers higher accuracy compared with the classical multiscale method and superior efficiency over high-fidelity finite element methods. 展开更多
关键词 Thermal conductivity Surface-enriched multiscale method METAMATERIAL Surface effect Multi-scale modeling
在线阅读 下载PDF
Analytical solutions of transient heat conduction in multilayered slabs and application to thermal analysis of landfills 被引量:6
3
作者 WU Xun SHI Jian-yong +2 位作者 LEI Hao LI Yu-ping Leslie OKINE 《Journal of Central South University》 SCIE EI CAS CSCD 2019年第11期3175-3187,共13页
The study of transient heat conduction in multilayered slabs is widely used in various engineering fields. In this paper, the transient heat conduction in multilayered slabs with general boundary conditions and arbitr... The study of transient heat conduction in multilayered slabs is widely used in various engineering fields. In this paper, the transient heat conduction in multilayered slabs with general boundary conditions and arbitrary heat generations is analysed. The boundary conditions are general and include various combinations of Dirichlet, Neumann or Robin boundary conditions at either surface. Moreover, arbitrary heat generations in the slabs are taken into account. The solutions are derived by basic methods, including the superposition method, separation variable method and orthogonal expansion method. The simplified double-layered analytical solution is validated by a numerical method and applied to predicting the temporal and spatial distribution of the temperature inside a landfill. It indicates the ability of the proposed analytical solutions for solving the wide range of applied transient heat conduction problems. 展开更多
关键词 heat conduction multilayered slab heat generation analytical solutions LANDFILL
在线阅读 下载PDF
Analysis of steady heat conduction for 3D axisymmetric functionally graded circular plate 被引量:3
4
作者 刘五祥 《Journal of Central South University》 SCIE EI CAS 2013年第6期1616-1622,共7页
The thermal conduction behavior of the three-dimensional axisymmetric functionally graded circular plate was studied under thermal loads on its top and bottom surfaces. Material properties were taken to be arbitrary d... The thermal conduction behavior of the three-dimensional axisymmetric functionally graded circular plate was studied under thermal loads on its top and bottom surfaces. Material properties were taken to be arbitrary distribution functions of the thickness. A temperature function that satisfies thermal boundary conditions at the edges and the variable separation method were used to reduce equation governing the steady state heat conduction to an ordinary differential equation (ODE) in the thickness coordinate which was solved analytically. Next, resulting variable coefficients ODE due to arbitrary distribution of material properties along thickness coordinate was also solved by the Peano-Baker series. Some numerical examples were given to demonstrate the accuracy, efficiency of the present model, mad to investigate the influence of different distributions of material properties on the temperature field. The numerical results confirm that the influence of different material distributions, gradient indices and thickness of plate to temperature field in plate can not be ignored. 展开更多
关键词 functionally graded circular plate variable separation method steady heat conduction Peano-Baker series
在线阅读 下载PDF
Effect of laser power on microstructure and mechanical properties of laser heat conduction lap welded joint between AZ31B magnesium alloy and DP780 galvanized steel 被引量:3
5
作者 GAO Ju-ming WANG Dan +2 位作者 ZHUANG Dong-dong ZHAO Xin-yi LEI Yu-cheng 《Journal of Central South University》 SCIE EI CAS CSCD 2022年第10期3463-3475,共13页
In this work, laser heat conduction lap welding(LHCLW) of AZ31B magnesium alloy sheet and DP780galvanized steel sheet was carried out by the defocused laser beam. The effects of laser power on the microstructure and m... In this work, laser heat conduction lap welding(LHCLW) of AZ31B magnesium alloy sheet and DP780galvanized steel sheet was carried out by the defocused laser beam. The effects of laser power on the microstructure and mechanical properties of the joint were studied. The pros and cons of the joint were identified and evaluated by measuring the tensile shear strength, microhardness and microstructure observation. The formation mechanism of various phases at the Mg/steel interface was analyzed. The results indicated that the galvanized layer could promote the metallurgical bonding between magnesium alloy and steel by improving the diffusion ability of molten magnesium alloy at the steel interface and reacting with Mg, so as to enhance the strength of the joint. A continuous dense layered eutectic structure(α-Mg+MgZn) was formed at the interface of the joint, while MgZn_(2)and MgZn phase was formed at the weld edge zone and heat affective zone(HAZ), whereas no reaction layer was generated between the uncoated steel and magnesium alloy. A sound joint could be obtained at 2.5 kW, and the corresponding tensile shear strength reached the maximum value of 42.9 N/mm. The strength was slightly reduced at 2.6 kW due to the existence of microcracks in the eutectic reaction layer. 展开更多
关键词 AZ31B magnesium alloy DP780 galvanized steel laser heat conduction lap welding laser power microstructure mechanical properties
在线阅读 下载PDF
Theoretical solution of transient heat conduction problem in one-dimensional double-layer composite medium 被引量:2
6
作者 周龙 白敏丽 +1 位作者 吕继组 崔文政 《Journal of Central South University》 SCIE EI CAS 2010年第6期1403-1408,共6页
To make heat conduction equation embody the essence of physical phenomenon under study, dimensionless factors were introduced and the transient heat conduction equation and its boundary conditions were transformed to ... To make heat conduction equation embody the essence of physical phenomenon under study, dimensionless factors were introduced and the transient heat conduction equation and its boundary conditions were transformed to dimensionless forms. Then, a theoretical solution model of transient heat conduction problem in one-dimensional double-layer composite medium was built utilizing the natural eigenfunction expansion method. In order to verify the validity of the model, the results of the above theoretical solution were compared with those of finite element method. The results by the two methods are in a good agreement. The maximum errors by the two methods appear when τ(τ is nondimensional time) equals 0.1 near the boundaries of ζ =1 (ζ is nondimensional space coordinate) and ζ =4. As τ increases, the error decreases gradually, and when τ =5 the results of both solutions have almost no change with the variation of coordinate 4. 展开更多
关键词 composite medium transient heat conduction theoretical solution natural eigenfunction expansion method
在线阅读 下载PDF
Transient numerical simulation of annealing process in a conjugate combined radiation conduction heat transfer 被引量:1
7
作者 M.Foruzan NIA S.A.Gandjalikhan NASSAB 《Journal of Central South University》 SCIE EI CAS CSCD 2020年第9期2662-2672,共11页
The annealing time is an important affecting factor in the performance of many furnaces.The present work deals with the transient simulation of annealing process in a cubic furnace in which a solid element is placed i... The annealing time is an important affecting factor in the performance of many furnaces.The present work deals with the transient simulation of annealing process in a cubic furnace in which a solid element is placed in its center.As the working gas can have some radiating features,a set of governing equations including the energy balance with the radiative transfer equation(RTE)for the gray radiating medium and the conduction equation inside the solid product are numerically solved with progressing in time.Numerical results which are validated against both analytical and theoretical findings in the literature demonstrate that during the starting period,a high rate of radiant energy transfers into the solid body even at small optical thickness.This behavior which hastens the rate of heat transfer at low values of the radiation conduction parameter,causes a fast annealing process in which the solid body warms up to its maximum temperature.Moreover,it is revealed that the rate of heat transfer is an increasing function of radiation-conduction parameter. 展开更多
关键词 CONJUGATE RADIATION conduction transient annealing process
在线阅读 下载PDF
Resolving double-sided inverse heat conduction problem using calibration integral equation method
8
作者 CHEN Hong-chu 《Journal of Central South University》 SCIE EI CAS CSCD 2019年第8期2100-2108,共9页
In this paper, a novel calibration integral equation is derived for resolving double-sided, two-probe inverse heat conduction problem of surface heat flux estimation. In contrast to the conventional inverse heat condu... In this paper, a novel calibration integral equation is derived for resolving double-sided, two-probe inverse heat conduction problem of surface heat flux estimation. In contrast to the conventional inverse heat conduction techniques, this calibration approach does not require explicit input of the probe locations, thermophysical properties of the host material and temperature sensor parameters related to thermal contact resistance, sensor capacitance and conductive lead losses. All those parameters and properties are inherently contained in the calibration framework in terms of Volterra integral equation of the first kind. The Laplace transform technique is applied and the frequency domain manipulations of the heat equation are performed for deriving the calibration integral equation. Due to the ill-posed nature, regularization is required for the inverse heat conduction problem, a future-time method or singular value decomposition (SVD) can be used for stabilizing the ill-posed Volterra integral equation of the first kind. 展开更多
关键词 inverse heat conduction problem surface heat flux estimation calibration integral equation method
在线阅读 下载PDF
Conduction mechanism studies on electron transfer of disordered system 被引量:1
9
作者 徐慧 宋祎璞 李新梅 《Journal of Central South University of Technology》 2002年第2期134-137,共4页
Using the negative eigenvalue theory and the infinite order perturbation theory, a new method was developed to solve the eigenvectors of disordered systems. The result shows that eigenvectors change from the extended ... Using the negative eigenvalue theory and the infinite order perturbation theory, a new method was developed to solve the eigenvectors of disordered systems. The result shows that eigenvectors change from the extended state to the localized state with the increase of the site points and the disordered degree of the system. When electric field is exerted, the electrons transfer from one localized state to another one. The conductivity is induced by the electron transfer. The authors derive the formula of electron conductivity and find the electron hops between localized states whose energies are close to each other, whereas localized positions differ from each other greatly. At low temperature the disordered system has the character of the negative differential dependence of resistivity and temperature. 展开更多
关键词 disordered system localized state electron transfer D.C. conductivity
在线阅读 下载PDF
Factors Affecting the Thermal Conductivity of Vacuum-Insulated Panels:a Review 被引量:1
10
作者 RONG Xian YANG Yuqi ZHANG Jianxin 《材料导报》 北大核心 2025年第13期278-290,共13页
In recent years,there has been a growing global demand for carbon neutrality and energy efficiency,which are expected to become long-term trends.In the field of architecture,an effective approach to achieve this is to... In recent years,there has been a growing global demand for carbon neutrality and energy efficiency,which are expected to become long-term trends.In the field of architecture,an effective approach to achieve this is to reduce heat loss in buildings.Vacuum insulation panels(VIPs),a type of high-performance insulation material,have been increasingly utilised in the construction industry and have played an increa-singly important role as their performance and manufacturing processes continue to improve.This paper provides a review of the factors affecting the thermal conductivity of VIPs and presents a detailed overview of the research progress on core materials,barrier films,and getters.The current research status of VIPs is summarised,including their thermal conductivity,service life,and thermal bridging effects,as well as their applications in the field of architecture.This review aims to provide a comprehensive understanding for relevant practitioners on the factors influencing the thermal conductivity of VIPs,and based on which,measures can be taken to produce VIPs with lower thermal conductivity and longer service life. 展开更多
关键词 vacuum insulation panel thermal conductivity thermal insulation energy conservation
在线阅读 下载PDF
Advances of carbon nanotubes in lithium-ion batteries for the era of carbon neutrality
11
作者 HE Zi-ying YU Xing-wei +3 位作者 LV Qing-long WANG Xin-ping ZHANG Chen-xi WEI Fei 《新型炭材料(中英文)》 北大核心 2025年第4期766-781,共16页
Energy storage is a key factor in the drive for carbon neutrality and carbon nanotubes(CNTs)may have an important role in this.Their intrinsic sp2 covalent structure gives them excellent electrical conductivity,mechan... Energy storage is a key factor in the drive for carbon neutrality and carbon nanotubes(CNTs)may have an important role in this.Their intrinsic sp2 covalent structure gives them excellent electrical conductivity,mechanical strength,and chemical stability,making them suitable for many uses in energy storage,such as lithium-ion batteries(LIBs).Currently,their use in LIBs mainly focuses on conductive networks,current collectors,and dry electrodes.The review outlines advances in the use of CNTs in the cathodes and anodes of LIBs,especially in the electrode fabrication and mechanical sensors,as well as providing insights into their future development. 展开更多
关键词 Carbon nanotubes Conductive additives Lithium-ion batteries Carbon neutrality Energy storage
在线阅读 下载PDF
Novel thermal interface materials based on mesocarbon microbeads with a high through-plane thermal conductivity
12
作者 SUN Zhi-peng MA Cheng +2 位作者 WANG Ji-tong QIAO Wen-ming LING Li-cheng 《新型炭材料(中英文)》 北大核心 2025年第2期440-455,共16页
The rapid development of the information era has led to in-creased power consumption,which generates more heat.This requires more efficient thermal management systems,with the most direct ap-proach being the developme... The rapid development of the information era has led to in-creased power consumption,which generates more heat.This requires more efficient thermal management systems,with the most direct ap-proach being the development of su-perior thermal interface materials(TIMs).Mesocarbon microbeads(MCMBs)have several desirable properties for this purpose,includ-ing high thermal conductivity and excellent thermal stability.Although their thermal conductivity(K)may not be exceptional among all carbon materials,their ease of production and low cost make them ideal filler materials for developing a new generation of carbon-based TIMs.We report the fabrication of high-performance TIMs by incorporating MCMBs in a polyimide(PI)framework,producing highly graphitized PI/MCMB(PM)foams and anisotropic polydimethylsiloxane/PM(PDMS/PM)composites with a high thermal conductivity using directional freezing and high-temperature thermal annealing.The resulting materials had a high through-plane(TP)K of 15.926 W·m^(−1)·K^(−1),4.83 times that of conventional thermally conductive silicone pads and 88.5 times higher than that of pure PDMS.The composites had excellent mechanical properties and thermal stability,meeting the de-mands of modern electronic products for integration,multi-functionality,and miniaturization. 展开更多
关键词 Thermal interface material Mesocarbon microbeads Through-plane thermal conductivity
在线阅读 下载PDF
Efficiently enhancing thermal conductivity of polymer bonded explosives via the construction of primary-secondary thermal conductivity networks
13
作者 Xunyi Wang Peng Wang +4 位作者 Jie Chen Zhipeng Liu Yuxin Luo Wenbin Yang Guansong He 《Defence Technology(防务技术)》 2025年第6期95-103,共9页
Realizing effective enhancement in the thermally conductive performance of polymer bonded explosives(PBXs) is vital for improving the resultant environmental adaptabilities of the PBXs composites. Herein, a kind of pr... Realizing effective enhancement in the thermally conductive performance of polymer bonded explosives(PBXs) is vital for improving the resultant environmental adaptabilities of the PBXs composites. Herein, a kind of primary-secondary thermally conductive network was designed by water-suspension granulation, surface coating, and hot-pressing procedures in the graphene-based PBXs composites to greatly increase the thermal conductive performance of the composites. The primary network with a threedimensional structure provided the heat-conducting skeleton, while the secondary network in the polymer matrix bridged the primary network to increase the network density. The enhancement efficiency in the thermally conductive performance of the composites reached the highest value of 59.70% at a primary-secondary network ratio of 3:1. Finite element analysis confirmed the synergistic enhancement effect of the primary and secondary thermally conductive networks. This study introduces an innovative approach to designing network structures for PBX composites, significantly enhancing their thermal conductivity. 展开更多
关键词 Thermally conductive performance Primary-secondary thermally conductive networks Network density Polymer-bonded explosives
在线阅读 下载PDF
A self-sensing HTPB liner for non-destructive monitoring nitroglycerin(NG)migration at the interface between double base propellant and the HTPB liner
14
作者 Jie Wang Bo Liu +4 位作者 Yanchun Li Mengqi Chen Qian Guo Dongming Song Aifeng Jiang 《Defence Technology(防务技术)》 2025年第8期166-175,共10页
During the storage of composite propellants, the migration of plasticizers and other unbonded additives at the interfaces of liner adhesives has garnered significant attention in understanding liner failure mechanisms... During the storage of composite propellants, the migration of plasticizers and other unbonded additives at the interfaces of liner adhesives has garnered significant attention in understanding liner failure mechanisms, aging processes, and safety performance. However, there is currently no non-destructive and quantitative detection method for migration of plasticizers in propellant liner. In this study, we developed a HTPB sensing liner by incorporating conductive fillers-namely carbon black(CB), carbon nanotubes(CNTs), and graphene nanoplatelets(GNP)-into the HTPB matrix. The synergistic interaction between CNTs and GNP facilitates the formation of a tunneling conductive network that imparts electrical conductivity to the HTPB liner. To elucidate the functional relationship between conductivity and nitroglycerin(NG) migration, we applied the HTPB sensing liner onto double base propellant surfaces and measured both the conductivity of the sensing layer and NG migration during a 71°C accelerated aging experiment. The results shows that when CNTs/GNP content reaches 3wt%, there is an exponential correlation between conductivity and NG migration with a fitting degree of 0.9652;the average response sensitivity of ΔR/R0 relative to NG migration is calculated as 41.69, with an average deviation of merely5.67% between NG migrations derived from conductivity fittings compared to those obtained via TGA testing results. Overall, this sensing liner exhibits excellent capabilities for detecting NG migration nondestructively and quantitatively while offering a novel approach for assessing interfacial component migrations as well as debonding defects in propellants-a promising avenue for future self-monitoring strategies regarding propellant integrity. 展开更多
关键词 Sensing liner Electrical conductivity Nitroglycerine migration Non-destructive detection
在线阅读 下载PDF
Study on the reaction kinetics mechanism and properties of RDX/ADN/FKM2602 composite microspheres
15
作者 Cenlin Pan Zhenhua Liu +5 位作者 Yubing Zhao Ning Liu Taixing Liang Xiaodong Li Jingyu Wang Xiaofeng Shi 《Defence Technology(防务技术)》 2025年第6期131-140,共10页
This study prepared a class of RDX-based composite microspheres(RAF)containing ADN and FKM2602.The reaction kinetics of RAF composite microspheres were effectively improved by maintaining the system's high energy ... This study prepared a class of RDX-based composite microspheres(RAF)containing ADN and FKM2602.The reaction kinetics of RAF composite microspheres were effectively improved by maintaining the system's high energy and safety performance.In the close packing state,when the heating rate is rapid,the thermal stability of RAF composite microspheres is better than that of RDX;the close packing state will reduce the degree of freedom of RDX and ADN reaction but will increase the degree of freedom of RAF composite microsphere reaction.The thermal conductivity of RAF composite microspheres is close to that of RDX.In the ignition experiment,the flame of RAF composite microspheres can be maintained without the external heat source.Regarding safety,the H50of RAF composite microspheres was 274.04%higher than that of RDX.The detonation velocity of RAF composite microspheres is slightly higher than that of raw material RDX.Overall,these findings highlight the effectiveness of ADN in enhancing the reaction kinetics of RDX-based composites. 展开更多
关键词 RDX Thermal analysis kinetics Model reconstruction Thermal conductivity
在线阅读 下载PDF
Thermal and solutal Marangoni convection in three-layered viscous flows:Insights for liquid metal battery optimization
16
作者 SHAHEEN Sidra HUANG Hu-lin +2 位作者 ARAIN Muhammad Bilal BHATTI Muhammad Mubashir KHALIQUE Chaudry Masood 《Journal of Central South University》 2025年第6期2087-2100,共14页
This study examines the intricate occurrences of thermal and solutal Marangoni convection in three-layered flows of viscous fluids,with a particular emphasis on their relevance to renewable energy systems.This researc... This study examines the intricate occurrences of thermal and solutal Marangoni convection in three-layered flows of viscous fluids,with a particular emphasis on their relevance to renewable energy systems.This research examines the flow of a three-layered viscous fluid,considering the combined influence of heat and solutal buoyancy driven Rayleigh-Bénard convection,as well as thermal and solutal Marangoni convection.The homotopy perturbation method is used to examine and simulate complex fluid flow and transport phenomena,providing important understanding of the fundamental physics and assisting in the optimization of various battery configurations.The inquiry examines the primary elements that influence Marangoni convection and its impact on battery performance,providing insights on possible enhancements in energy storage devices.The findings indicate that the velocity profiles shown graphically exhibit a prominent core zone characterized by the maximum speed,which progressively decreases as it approaches the walls of the channel.This study enhances our comprehension of fluid dynamics and the transmission of heat and mass in intricate systems,which has substantial ramifications for the advancement of sustainable energy solutions. 展开更多
关键词 viscous fluid three-layered closed geometries electrical conductivity thermal convection solutal convection mass diffusivity homotopy perturbation methods
在线阅读 下载PDF
Indoor thermal comfort studies based on physiological parameter measurement and questionnaire investigation 被引量:6
17
作者 郑洁 陈良 +1 位作者 李百战 陈露 《Journal of Central South University of Technology》 EI 2006年第4期404-407,共4页
Physiological parameters of people and enact assessment standard of indoor thermal environment that are appropriate to our national conditions were explored from the perspective of physiology. From December 2005 to Ja... Physiological parameters of people and enact assessment standard of indoor thermal environment that are appropriate to our national conditions were explored from the perspective of physiology. From December 2005 to January 2006, nerve conduction velocities and skin temperatures of 20 healthy students were tested with questionnaire investigation. The results show that the nerve conduction velocities as well as skin temperatures present an obvious decline trend in a continuous draught, and that the nerve conduction velocities and skin temperatures have a definite linear relationship. Draught velocity is an important factor in winter that affects body comfort, and the subjects are sensitive to air velocity. 展开更多
关键词 thermal comfort nerve conduction velocity sensory never conduction questionnaire
在线阅读 下载PDF
感温电阻式热导量热计的研制
18
作者 秦自明 陈民助 邓郁 《化学研究与应用》 CAS CSCD 1991年第1期58-61,共4页
目前国内外生产和应用的热导量热计其感温系统多为热电堆。这种类型的量热计由于涉及几十对甚至几百对热电偶的焊接和安装,难于做到处于孪生体系的两个量热单元完全对称,热电偶金属的长短、焊点的大小和形状、绝缘层的厚薄和安装松紧等... 目前国内外生产和应用的热导量热计其感温系统多为热电堆。这种类型的量热计由于涉及几十对甚至几百对热电偶的焊接和安装,难于做到处于孪生体系的两个量热单元完全对称,热电偶金属的长短、焊点的大小和形状、绝缘层的厚薄和安装松紧等都是造成不对称的根源。这就容易使量热计的稳定性受到影响。 展开更多
关键词 conduction Catorimeter RESISTANCE htermometer
全文增补中
处理走航式海洋多参数剖面测量系统(MVP)温度和电导率滞后效应的方法 被引量:10
19
作者 任强 于非 +2 位作者 刁新源 司广成 魏传杰 《海洋科学》 CAS CSCD 北大核心 2014年第8期59-66,共8页
走航式海洋多参数剖面测量系统(moving vessel profiler,MVP)是一种集成程度和自动化程度都较高的海洋调查设备,能对海洋多要素进行同时观测,获得水平方向的高分辨率数据资料。由于温度和电导率传感器响应时间的不匹配,MVP下放速度过快... 走航式海洋多参数剖面测量系统(moving vessel profiler,MVP)是一种集成程度和自动化程度都较高的海洋调查设备,能对海洋多要素进行同时观测,获得水平方向的高分辨率数据资料。由于温度和电导率传感器响应时间的不匹配,MVP下放速度过快(峰值速度4 m/s)而造成非常明显的盐度尖峰现象。本研究结合Fofonoff(F)法、时间常数指数递归数字滤波(Giles and McDougall,GM)法和Grose提出的盐度尖峰订正方案,提出了一种新的方法,即MCT(match conductivity and temperature response time)法,通过对压力、温度和电导率传感器进行响应时间的匹配来减弱盐度尖峰。将SBE-9型CTD资料作为标准,发现订正后的资料与CTD盐度曲线的互相关系数为0.917,误差比订正前减小80%。对比35°N断面修正前后的盐度资料,订正后温盐跃层处出现的低盐区域消失。MVP的应用比常规海洋调查仪器CTD对于海洋现象的观测更有优势。 展开更多
关键词 走航式海洋多参数剖面测量系统MVP 盐度尖峰 MCT(match CONDUCTIVITY and temperature RESPONSE time)'~r
在线阅读 下载PDF
Numerical simulation on thermal accumulation of cemented tailings backfill 被引量:3
20
作者 ZHANG Xiao-yan ZHAO Min +4 位作者 LIU Lang HUAN Chao SONG KI-IL XU Mu-yan WEN De 《Journal of Central South University》 SCIE EI CAS CSCD 2021年第7期2221-2237,共17页
Based on the collaborative exploitation of deep mineral resources and geothermal resources, the thermal accumulation process of cemented tailings backfill(CTB) was studied by numerical simulation. The effects of therm... Based on the collaborative exploitation of deep mineral resources and geothermal resources, the thermal accumulation process of cemented tailings backfill(CTB) was studied by numerical simulation. The effects of thermal accumulation time, slurry proportions and temperature conditions on the thermal accumulation of backfill are analyzed, the influence of the heat conduction between backfill and surrounding rock, the heat convection between backfill and airflow on thermal accumulation were compared simultaneously. The results show that the total thermal accumulation capacity increases by approximately 85% within 10-90 d. The influence of surrounding rock temperature and initial temperature on total thermal accumulation capacity is more significant and it is approximately 2 times of the influence of slurry proportions under the conditions of this study. It is clear that the rise of surrounding rock temperature and the decrease of initial temperature can improve the thermal accumulation capacity more effectively. Moreover, the heat conduction accounts for a considerable proportion in the process of thermal accumulation, the average heat conduction capacity is approximately 25 times of the heat convection capacity. This study can provide the theoretical basis and application reference for the optimization of thermal accumulation process of CTB in the exploitation of geothermal resources. 展开更多
关键词 cemented tailings backfill thermal accumulation heat conduction heat convection total thermal accumulation capacity
在线阅读 下载PDF
上一页 1 2 7 下一页 到第
使用帮助 返回顶部