To develop proton-conducting materials with high hydrothermal and acid-base stability and to elucidate the proton-transport mechanism through visualized structural analysis,two new lanthanum phosphite-oxalates with 3D...To develop proton-conducting materials with high hydrothermal and acid-base stability and to elucidate the proton-transport mechanism through visualized structural analysis,two new lanthanum phosphite-oxalates with 3D frameworks,designated as[La(HPO_(3))(C_(2)O_(4))0.5(H_(2)O)_(2)](La‑1)and(C_(6)H_(16)N_(2))(H_(3)O)[La_(2)(H_(2)PO_(3))_(3)(C_(2)O_(4))_(3)(H_(2)O)](La‑2)(C_(6)H_(14)N_(2)=cis-2,6-dimethylpiperazine),were prepared by hydrothermal and solvothermal conduction,respectively.La‑1 was constructed with lanthanum phosphite 2D layers and C_(2)O_(4)^(2-)groups,whereas La‑2 was constructed with lanthanum oxalate 2D layers and H_(2)PO^(3-)groups.Alternating current(AC)impedance spectra indicate that the pro-ton conductivities of both compounds could reach 10^(-4)S·cm^(-1)and remain highly durable at 75℃and 98%of rela-tive humidity(RH).Due to the abundance of H-bonds in La‑2,theσof La‑2 was higher than that of La‑1.La‑1 exhibited excellent water and pH stability.CCDC:2439965,La‑1;443776,La‑2.展开更多
This paper examined how microstructure influences the homogenized thermal conductivity of cellular structures and revealed a surface-induced size-dependent effect.This effect is linked to the porous microstructural fe...This paper examined how microstructure influences the homogenized thermal conductivity of cellular structures and revealed a surface-induced size-dependent effect.This effect is linked to the porous microstructural features of cellular structures,which stems from the degree of porosity and the distri-bution of the pores.Unlike the phonon-driven surface effect at the nanoscale,the macro-scale surface mechanism in thermal cellular structures is found to be the microstructure-induced changes in the heat conduction path based on fully resolved 3D numerical simulations.The surface region is determined by the microstructure,characterized by the intrinsic length.With the coupling between extrinsic and intrinsic length scales under the surface mechanism,a surface-enriched multiscale method was devel-oped to accurately capture the complex size-dependent thermal conductivity.The principle of scale separation required by classical multiscale methods is not necessary to be satisfied by the proposed multiscale method.The significant potential of the surface-enriched multiscale method was demon-strated through simulations of the effective thermal conductivity of a thin-walled metamaterial struc-ture.The surface-enriched multiscale method offers higher accuracy compared with the classical multiscale method and superior efficiency over high-fidelity finite element methods.展开更多
The study of transient heat conduction in multilayered slabs is widely used in various engineering fields. In this paper, the transient heat conduction in multilayered slabs with general boundary conditions and arbitr...The study of transient heat conduction in multilayered slabs is widely used in various engineering fields. In this paper, the transient heat conduction in multilayered slabs with general boundary conditions and arbitrary heat generations is analysed. The boundary conditions are general and include various combinations of Dirichlet, Neumann or Robin boundary conditions at either surface. Moreover, arbitrary heat generations in the slabs are taken into account. The solutions are derived by basic methods, including the superposition method, separation variable method and orthogonal expansion method. The simplified double-layered analytical solution is validated by a numerical method and applied to predicting the temporal and spatial distribution of the temperature inside a landfill. It indicates the ability of the proposed analytical solutions for solving the wide range of applied transient heat conduction problems.展开更多
The thermal conduction behavior of the three-dimensional axisymmetric functionally graded circular plate was studied under thermal loads on its top and bottom surfaces. Material properties were taken to be arbitrary d...The thermal conduction behavior of the three-dimensional axisymmetric functionally graded circular plate was studied under thermal loads on its top and bottom surfaces. Material properties were taken to be arbitrary distribution functions of the thickness. A temperature function that satisfies thermal boundary conditions at the edges and the variable separation method were used to reduce equation governing the steady state heat conduction to an ordinary differential equation (ODE) in the thickness coordinate which was solved analytically. Next, resulting variable coefficients ODE due to arbitrary distribution of material properties along thickness coordinate was also solved by the Peano-Baker series. Some numerical examples were given to demonstrate the accuracy, efficiency of the present model, mad to investigate the influence of different distributions of material properties on the temperature field. The numerical results confirm that the influence of different material distributions, gradient indices and thickness of plate to temperature field in plate can not be ignored.展开更多
In this work, laser heat conduction lap welding(LHCLW) of AZ31B magnesium alloy sheet and DP780galvanized steel sheet was carried out by the defocused laser beam. The effects of laser power on the microstructure and m...In this work, laser heat conduction lap welding(LHCLW) of AZ31B magnesium alloy sheet and DP780galvanized steel sheet was carried out by the defocused laser beam. The effects of laser power on the microstructure and mechanical properties of the joint were studied. The pros and cons of the joint were identified and evaluated by measuring the tensile shear strength, microhardness and microstructure observation. The formation mechanism of various phases at the Mg/steel interface was analyzed. The results indicated that the galvanized layer could promote the metallurgical bonding between magnesium alloy and steel by improving the diffusion ability of molten magnesium alloy at the steel interface and reacting with Mg, so as to enhance the strength of the joint. A continuous dense layered eutectic structure(α-Mg+MgZn) was formed at the interface of the joint, while MgZn_(2)and MgZn phase was formed at the weld edge zone and heat affective zone(HAZ), whereas no reaction layer was generated between the uncoated steel and magnesium alloy. A sound joint could be obtained at 2.5 kW, and the corresponding tensile shear strength reached the maximum value of 42.9 N/mm. The strength was slightly reduced at 2.6 kW due to the existence of microcracks in the eutectic reaction layer.展开更多
To make heat conduction equation embody the essence of physical phenomenon under study, dimensionless factors were introduced and the transient heat conduction equation and its boundary conditions were transformed to ...To make heat conduction equation embody the essence of physical phenomenon under study, dimensionless factors were introduced and the transient heat conduction equation and its boundary conditions were transformed to dimensionless forms. Then, a theoretical solution model of transient heat conduction problem in one-dimensional double-layer composite medium was built utilizing the natural eigenfunction expansion method. In order to verify the validity of the model, the results of the above theoretical solution were compared with those of finite element method. The results by the two methods are in a good agreement. The maximum errors by the two methods appear when τ(τ is nondimensional time) equals 0.1 near the boundaries of ζ =1 (ζ is nondimensional space coordinate) and ζ =4. As τ increases, the error decreases gradually, and when τ =5 the results of both solutions have almost no change with the variation of coordinate 4.展开更多
The annealing time is an important affecting factor in the performance of many furnaces.The present work deals with the transient simulation of annealing process in a cubic furnace in which a solid element is placed i...The annealing time is an important affecting factor in the performance of many furnaces.The present work deals with the transient simulation of annealing process in a cubic furnace in which a solid element is placed in its center.As the working gas can have some radiating features,a set of governing equations including the energy balance with the radiative transfer equation(RTE)for the gray radiating medium and the conduction equation inside the solid product are numerically solved with progressing in time.Numerical results which are validated against both analytical and theoretical findings in the literature demonstrate that during the starting period,a high rate of radiant energy transfers into the solid body even at small optical thickness.This behavior which hastens the rate of heat transfer at low values of the radiation conduction parameter,causes a fast annealing process in which the solid body warms up to its maximum temperature.Moreover,it is revealed that the rate of heat transfer is an increasing function of radiation-conduction parameter.展开更多
In this paper, a novel calibration integral equation is derived for resolving double-sided, two-probe inverse heat conduction problem of surface heat flux estimation. In contrast to the conventional inverse heat condu...In this paper, a novel calibration integral equation is derived for resolving double-sided, two-probe inverse heat conduction problem of surface heat flux estimation. In contrast to the conventional inverse heat conduction techniques, this calibration approach does not require explicit input of the probe locations, thermophysical properties of the host material and temperature sensor parameters related to thermal contact resistance, sensor capacitance and conductive lead losses. All those parameters and properties are inherently contained in the calibration framework in terms of Volterra integral equation of the first kind. The Laplace transform technique is applied and the frequency domain manipulations of the heat equation are performed for deriving the calibration integral equation. Due to the ill-posed nature, regularization is required for the inverse heat conduction problem, a future-time method or singular value decomposition (SVD) can be used for stabilizing the ill-posed Volterra integral equation of the first kind.展开更多
Using the negative eigenvalue theory and the infinite order perturbation theory, a new method was developed to solve the eigenvectors of disordered systems. The result shows that eigenvectors change from the extended ...Using the negative eigenvalue theory and the infinite order perturbation theory, a new method was developed to solve the eigenvectors of disordered systems. The result shows that eigenvectors change from the extended state to the localized state with the increase of the site points and the disordered degree of the system. When electric field is exerted, the electrons transfer from one localized state to another one. The conductivity is induced by the electron transfer. The authors derive the formula of electron conductivity and find the electron hops between localized states whose energies are close to each other, whereas localized positions differ from each other greatly. At low temperature the disordered system has the character of the negative differential dependence of resistivity and temperature.展开更多
In recent years,there has been a growing global demand for carbon neutrality and energy efficiency,which are expected to become long-term trends.In the field of architecture,an effective approach to achieve this is to...In recent years,there has been a growing global demand for carbon neutrality and energy efficiency,which are expected to become long-term trends.In the field of architecture,an effective approach to achieve this is to reduce heat loss in buildings.Vacuum insulation panels(VIPs),a type of high-performance insulation material,have been increasingly utilised in the construction industry and have played an increa-singly important role as their performance and manufacturing processes continue to improve.This paper provides a review of the factors affecting the thermal conductivity of VIPs and presents a detailed overview of the research progress on core materials,barrier films,and getters.The current research status of VIPs is summarised,including their thermal conductivity,service life,and thermal bridging effects,as well as their applications in the field of architecture.This review aims to provide a comprehensive understanding for relevant practitioners on the factors influencing the thermal conductivity of VIPs,and based on which,measures can be taken to produce VIPs with lower thermal conductivity and longer service life.展开更多
Energy storage is a key factor in the drive for carbon neutrality and carbon nanotubes(CNTs)may have an important role in this.Their intrinsic sp2 covalent structure gives them excellent electrical conductivity,mechan...Energy storage is a key factor in the drive for carbon neutrality and carbon nanotubes(CNTs)may have an important role in this.Their intrinsic sp2 covalent structure gives them excellent electrical conductivity,mechanical strength,and chemical stability,making them suitable for many uses in energy storage,such as lithium-ion batteries(LIBs).Currently,their use in LIBs mainly focuses on conductive networks,current collectors,and dry electrodes.The review outlines advances in the use of CNTs in the cathodes and anodes of LIBs,especially in the electrode fabrication and mechanical sensors,as well as providing insights into their future development.展开更多
The rapid development of the information era has led to in-creased power consumption,which generates more heat.This requires more efficient thermal management systems,with the most direct ap-proach being the developme...The rapid development of the information era has led to in-creased power consumption,which generates more heat.This requires more efficient thermal management systems,with the most direct ap-proach being the development of su-perior thermal interface materials(TIMs).Mesocarbon microbeads(MCMBs)have several desirable properties for this purpose,includ-ing high thermal conductivity and excellent thermal stability.Although their thermal conductivity(K)may not be exceptional among all carbon materials,their ease of production and low cost make them ideal filler materials for developing a new generation of carbon-based TIMs.We report the fabrication of high-performance TIMs by incorporating MCMBs in a polyimide(PI)framework,producing highly graphitized PI/MCMB(PM)foams and anisotropic polydimethylsiloxane/PM(PDMS/PM)composites with a high thermal conductivity using directional freezing and high-temperature thermal annealing.The resulting materials had a high through-plane(TP)K of 15.926 W·m^(−1)·K^(−1),4.83 times that of conventional thermally conductive silicone pads and 88.5 times higher than that of pure PDMS.The composites had excellent mechanical properties and thermal stability,meeting the de-mands of modern electronic products for integration,multi-functionality,and miniaturization.展开更多
Realizing effective enhancement in the thermally conductive performance of polymer bonded explosives(PBXs) is vital for improving the resultant environmental adaptabilities of the PBXs composites. Herein, a kind of pr...Realizing effective enhancement in the thermally conductive performance of polymer bonded explosives(PBXs) is vital for improving the resultant environmental adaptabilities of the PBXs composites. Herein, a kind of primary-secondary thermally conductive network was designed by water-suspension granulation, surface coating, and hot-pressing procedures in the graphene-based PBXs composites to greatly increase the thermal conductive performance of the composites. The primary network with a threedimensional structure provided the heat-conducting skeleton, while the secondary network in the polymer matrix bridged the primary network to increase the network density. The enhancement efficiency in the thermally conductive performance of the composites reached the highest value of 59.70% at a primary-secondary network ratio of 3:1. Finite element analysis confirmed the synergistic enhancement effect of the primary and secondary thermally conductive networks. This study introduces an innovative approach to designing network structures for PBX composites, significantly enhancing their thermal conductivity.展开更多
During the storage of composite propellants, the migration of plasticizers and other unbonded additives at the interfaces of liner adhesives has garnered significant attention in understanding liner failure mechanisms...During the storage of composite propellants, the migration of plasticizers and other unbonded additives at the interfaces of liner adhesives has garnered significant attention in understanding liner failure mechanisms, aging processes, and safety performance. However, there is currently no non-destructive and quantitative detection method for migration of plasticizers in propellant liner. In this study, we developed a HTPB sensing liner by incorporating conductive fillers-namely carbon black(CB), carbon nanotubes(CNTs), and graphene nanoplatelets(GNP)-into the HTPB matrix. The synergistic interaction between CNTs and GNP facilitates the formation of a tunneling conductive network that imparts electrical conductivity to the HTPB liner. To elucidate the functional relationship between conductivity and nitroglycerin(NG) migration, we applied the HTPB sensing liner onto double base propellant surfaces and measured both the conductivity of the sensing layer and NG migration during a 71°C accelerated aging experiment. The results shows that when CNTs/GNP content reaches 3wt%, there is an exponential correlation between conductivity and NG migration with a fitting degree of 0.9652;the average response sensitivity of ΔR/R0 relative to NG migration is calculated as 41.69, with an average deviation of merely5.67% between NG migrations derived from conductivity fittings compared to those obtained via TGA testing results. Overall, this sensing liner exhibits excellent capabilities for detecting NG migration nondestructively and quantitatively while offering a novel approach for assessing interfacial component migrations as well as debonding defects in propellants-a promising avenue for future self-monitoring strategies regarding propellant integrity.展开更多
This study prepared a class of RDX-based composite microspheres(RAF)containing ADN and FKM2602.The reaction kinetics of RAF composite microspheres were effectively improved by maintaining the system's high energy ...This study prepared a class of RDX-based composite microspheres(RAF)containing ADN and FKM2602.The reaction kinetics of RAF composite microspheres were effectively improved by maintaining the system's high energy and safety performance.In the close packing state,when the heating rate is rapid,the thermal stability of RAF composite microspheres is better than that of RDX;the close packing state will reduce the degree of freedom of RDX and ADN reaction but will increase the degree of freedom of RAF composite microsphere reaction.The thermal conductivity of RAF composite microspheres is close to that of RDX.In the ignition experiment,the flame of RAF composite microspheres can be maintained without the external heat source.Regarding safety,the H50of RAF composite microspheres was 274.04%higher than that of RDX.The detonation velocity of RAF composite microspheres is slightly higher than that of raw material RDX.Overall,these findings highlight the effectiveness of ADN in enhancing the reaction kinetics of RDX-based composites.展开更多
This study examines the intricate occurrences of thermal and solutal Marangoni convection in three-layered flows of viscous fluids,with a particular emphasis on their relevance to renewable energy systems.This researc...This study examines the intricate occurrences of thermal and solutal Marangoni convection in three-layered flows of viscous fluids,with a particular emphasis on their relevance to renewable energy systems.This research examines the flow of a three-layered viscous fluid,considering the combined influence of heat and solutal buoyancy driven Rayleigh-Bénard convection,as well as thermal and solutal Marangoni convection.The homotopy perturbation method is used to examine and simulate complex fluid flow and transport phenomena,providing important understanding of the fundamental physics and assisting in the optimization of various battery configurations.The inquiry examines the primary elements that influence Marangoni convection and its impact on battery performance,providing insights on possible enhancements in energy storage devices.The findings indicate that the velocity profiles shown graphically exhibit a prominent core zone characterized by the maximum speed,which progressively decreases as it approaches the walls of the channel.This study enhances our comprehension of fluid dynamics and the transmission of heat and mass in intricate systems,which has substantial ramifications for the advancement of sustainable energy solutions.展开更多
Physiological parameters of people and enact assessment standard of indoor thermal environment that are appropriate to our national conditions were explored from the perspective of physiology. From December 2005 to Ja...Physiological parameters of people and enact assessment standard of indoor thermal environment that are appropriate to our national conditions were explored from the perspective of physiology. From December 2005 to January 2006, nerve conduction velocities and skin temperatures of 20 healthy students were tested with questionnaire investigation. The results show that the nerve conduction velocities as well as skin temperatures present an obvious decline trend in a continuous draught, and that the nerve conduction velocities and skin temperatures have a definite linear relationship. Draught velocity is an important factor in winter that affects body comfort, and the subjects are sensitive to air velocity.展开更多
走航式海洋多参数剖面测量系统(moving vessel profiler,MVP)是一种集成程度和自动化程度都较高的海洋调查设备,能对海洋多要素进行同时观测,获得水平方向的高分辨率数据资料。由于温度和电导率传感器响应时间的不匹配,MVP下放速度过快...走航式海洋多参数剖面测量系统(moving vessel profiler,MVP)是一种集成程度和自动化程度都较高的海洋调查设备,能对海洋多要素进行同时观测,获得水平方向的高分辨率数据资料。由于温度和电导率传感器响应时间的不匹配,MVP下放速度过快(峰值速度4 m/s)而造成非常明显的盐度尖峰现象。本研究结合Fofonoff(F)法、时间常数指数递归数字滤波(Giles and McDougall,GM)法和Grose提出的盐度尖峰订正方案,提出了一种新的方法,即MCT(match conductivity and temperature response time)法,通过对压力、温度和电导率传感器进行响应时间的匹配来减弱盐度尖峰。将SBE-9型CTD资料作为标准,发现订正后的资料与CTD盐度曲线的互相关系数为0.917,误差比订正前减小80%。对比35°N断面修正前后的盐度资料,订正后温盐跃层处出现的低盐区域消失。MVP的应用比常规海洋调查仪器CTD对于海洋现象的观测更有优势。展开更多
Based on the collaborative exploitation of deep mineral resources and geothermal resources, the thermal accumulation process of cemented tailings backfill(CTB) was studied by numerical simulation. The effects of therm...Based on the collaborative exploitation of deep mineral resources and geothermal resources, the thermal accumulation process of cemented tailings backfill(CTB) was studied by numerical simulation. The effects of thermal accumulation time, slurry proportions and temperature conditions on the thermal accumulation of backfill are analyzed, the influence of the heat conduction between backfill and surrounding rock, the heat convection between backfill and airflow on thermal accumulation were compared simultaneously. The results show that the total thermal accumulation capacity increases by approximately 85% within 10-90 d. The influence of surrounding rock temperature and initial temperature on total thermal accumulation capacity is more significant and it is approximately 2 times of the influence of slurry proportions under the conditions of this study. It is clear that the rise of surrounding rock temperature and the decrease of initial temperature can improve the thermal accumulation capacity more effectively. Moreover, the heat conduction accounts for a considerable proportion in the process of thermal accumulation, the average heat conduction capacity is approximately 25 times of the heat convection capacity. This study can provide the theoretical basis and application reference for the optimization of thermal accumulation process of CTB in the exploitation of geothermal resources.展开更多
文摘To develop proton-conducting materials with high hydrothermal and acid-base stability and to elucidate the proton-transport mechanism through visualized structural analysis,two new lanthanum phosphite-oxalates with 3D frameworks,designated as[La(HPO_(3))(C_(2)O_(4))0.5(H_(2)O)_(2)](La‑1)and(C_(6)H_(16)N_(2))(H_(3)O)[La_(2)(H_(2)PO_(3))_(3)(C_(2)O_(4))_(3)(H_(2)O)](La‑2)(C_(6)H_(14)N_(2)=cis-2,6-dimethylpiperazine),were prepared by hydrothermal and solvothermal conduction,respectively.La‑1 was constructed with lanthanum phosphite 2D layers and C_(2)O_(4)^(2-)groups,whereas La‑2 was constructed with lanthanum oxalate 2D layers and H_(2)PO^(3-)groups.Alternating current(AC)impedance spectra indicate that the pro-ton conductivities of both compounds could reach 10^(-4)S·cm^(-1)and remain highly durable at 75℃and 98%of rela-tive humidity(RH).Due to the abundance of H-bonds in La‑2,theσof La‑2 was higher than that of La‑1.La‑1 exhibited excellent water and pH stability.CCDC:2439965,La‑1;443776,La‑2.
基金supported by the National Key Research and Development Program of China(Grant No.2021YFB1714600)the National Natural Science Foundation of China(Grant No.52175095)the Young Top-Notch Talent Cultivation Program of Hubei Province of China.
文摘This paper examined how microstructure influences the homogenized thermal conductivity of cellular structures and revealed a surface-induced size-dependent effect.This effect is linked to the porous microstructural features of cellular structures,which stems from the degree of porosity and the distri-bution of the pores.Unlike the phonon-driven surface effect at the nanoscale,the macro-scale surface mechanism in thermal cellular structures is found to be the microstructure-induced changes in the heat conduction path based on fully resolved 3D numerical simulations.The surface region is determined by the microstructure,characterized by the intrinsic length.With the coupling between extrinsic and intrinsic length scales under the surface mechanism,a surface-enriched multiscale method was devel-oped to accurately capture the complex size-dependent thermal conductivity.The principle of scale separation required by classical multiscale methods is not necessary to be satisfied by the proposed multiscale method.The significant potential of the surface-enriched multiscale method was demon-strated through simulations of the effective thermal conductivity of a thin-walled metamaterial struc-ture.The surface-enriched multiscale method offers higher accuracy compared with the classical multiscale method and superior efficiency over high-fidelity finite element methods.
基金Projects(41530637,41877222,41702290)supported by the National Natural Science Foundation of China
文摘The study of transient heat conduction in multilayered slabs is widely used in various engineering fields. In this paper, the transient heat conduction in multilayered slabs with general boundary conditions and arbitrary heat generations is analysed. The boundary conditions are general and include various combinations of Dirichlet, Neumann or Robin boundary conditions at either surface. Moreover, arbitrary heat generations in the slabs are taken into account. The solutions are derived by basic methods, including the superposition method, separation variable method and orthogonal expansion method. The simplified double-layered analytical solution is validated by a numerical method and applied to predicting the temporal and spatial distribution of the temperature inside a landfill. It indicates the ability of the proposed analytical solutions for solving the wide range of applied transient heat conduction problems.
基金Project(11102136)supported by the National Natural Science Foundation of ChinaProject(2012ZDK04)supported by the Open Project of Guangxi Key Laboratory of Disaster Prevention and Structural Safety,China
文摘The thermal conduction behavior of the three-dimensional axisymmetric functionally graded circular plate was studied under thermal loads on its top and bottom surfaces. Material properties were taken to be arbitrary distribution functions of the thickness. A temperature function that satisfies thermal boundary conditions at the edges and the variable separation method were used to reduce equation governing the steady state heat conduction to an ordinary differential equation (ODE) in the thickness coordinate which was solved analytically. Next, resulting variable coefficients ODE due to arbitrary distribution of material properties along thickness coordinate was also solved by the Peano-Baker series. Some numerical examples were given to demonstrate the accuracy, efficiency of the present model, mad to investigate the influence of different distributions of material properties on the temperature field. The numerical results confirm that the influence of different material distributions, gradient indices and thickness of plate to temperature field in plate can not be ignored.
基金Projects(51705219, 51905227) supported by the National Natural Science Foundation of ChinaProject(BK20200915) supported by the Natural Science Foundation of Jiangsu Province,ChinaProject(19KJB460013) supported by the General University Science Research Project of Jiangsu Province,China。
文摘In this work, laser heat conduction lap welding(LHCLW) of AZ31B magnesium alloy sheet and DP780galvanized steel sheet was carried out by the defocused laser beam. The effects of laser power on the microstructure and mechanical properties of the joint were studied. The pros and cons of the joint were identified and evaluated by measuring the tensile shear strength, microhardness and microstructure observation. The formation mechanism of various phases at the Mg/steel interface was analyzed. The results indicated that the galvanized layer could promote the metallurgical bonding between magnesium alloy and steel by improving the diffusion ability of molten magnesium alloy at the steel interface and reacting with Mg, so as to enhance the strength of the joint. A continuous dense layered eutectic structure(α-Mg+MgZn) was formed at the interface of the joint, while MgZn_(2)and MgZn phase was formed at the weld edge zone and heat affective zone(HAZ), whereas no reaction layer was generated between the uncoated steel and magnesium alloy. A sound joint could be obtained at 2.5 kW, and the corresponding tensile shear strength reached the maximum value of 42.9 N/mm. The strength was slightly reduced at 2.6 kW due to the existence of microcracks in the eutectic reaction layer.
基金Projects(50576007,50876016) supported by the National Natural Science Foundation of ChinaProjects(20062180) supported by the National Natural Science Foundation of Liaoning Province,China
文摘To make heat conduction equation embody the essence of physical phenomenon under study, dimensionless factors were introduced and the transient heat conduction equation and its boundary conditions were transformed to dimensionless forms. Then, a theoretical solution model of transient heat conduction problem in one-dimensional double-layer composite medium was built utilizing the natural eigenfunction expansion method. In order to verify the validity of the model, the results of the above theoretical solution were compared with those of finite element method. The results by the two methods are in a good agreement. The maximum errors by the two methods appear when τ(τ is nondimensional time) equals 0.1 near the boundaries of ζ =1 (ζ is nondimensional space coordinate) and ζ =4. As τ increases, the error decreases gradually, and when τ =5 the results of both solutions have almost no change with the variation of coordinate 4.
文摘The annealing time is an important affecting factor in the performance of many furnaces.The present work deals with the transient simulation of annealing process in a cubic furnace in which a solid element is placed in its center.As the working gas can have some radiating features,a set of governing equations including the energy balance with the radiative transfer equation(RTE)for the gray radiating medium and the conduction equation inside the solid product are numerically solved with progressing in time.Numerical results which are validated against both analytical and theoretical findings in the literature demonstrate that during the starting period,a high rate of radiant energy transfers into the solid body even at small optical thickness.This behavior which hastens the rate of heat transfer at low values of the radiation conduction parameter,causes a fast annealing process in which the solid body warms up to its maximum temperature.Moreover,it is revealed that the rate of heat transfer is an increasing function of radiation-conduction parameter.
文摘In this paper, a novel calibration integral equation is derived for resolving double-sided, two-probe inverse heat conduction problem of surface heat flux estimation. In contrast to the conventional inverse heat conduction techniques, this calibration approach does not require explicit input of the probe locations, thermophysical properties of the host material and temperature sensor parameters related to thermal contact resistance, sensor capacitance and conductive lead losses. All those parameters and properties are inherently contained in the calibration framework in terms of Volterra integral equation of the first kind. The Laplace transform technique is applied and the frequency domain manipulations of the heat equation are performed for deriving the calibration integral equation. Due to the ill-posed nature, regularization is required for the inverse heat conduction problem, a future-time method or singular value decomposition (SVD) can be used for stabilizing the ill-posed Volterra integral equation of the first kind.
文摘Using the negative eigenvalue theory and the infinite order perturbation theory, a new method was developed to solve the eigenvectors of disordered systems. The result shows that eigenvectors change from the extended state to the localized state with the increase of the site points and the disordered degree of the system. When electric field is exerted, the electrons transfer from one localized state to another one. The conductivity is induced by the electron transfer. The authors derive the formula of electron conductivity and find the electron hops between localized states whose energies are close to each other, whereas localized positions differ from each other greatly. At low temperature the disordered system has the character of the negative differential dependence of resistivity and temperature.
文摘In recent years,there has been a growing global demand for carbon neutrality and energy efficiency,which are expected to become long-term trends.In the field of architecture,an effective approach to achieve this is to reduce heat loss in buildings.Vacuum insulation panels(VIPs),a type of high-performance insulation material,have been increasingly utilised in the construction industry and have played an increa-singly important role as their performance and manufacturing processes continue to improve.This paper provides a review of the factors affecting the thermal conductivity of VIPs and presents a detailed overview of the research progress on core materials,barrier films,and getters.The current research status of VIPs is summarised,including their thermal conductivity,service life,and thermal bridging effects,as well as their applications in the field of architecture.This review aims to provide a comprehensive understanding for relevant practitioners on the factors influencing the thermal conductivity of VIPs,and based on which,measures can be taken to produce VIPs with lower thermal conductivity and longer service life.
文摘Energy storage is a key factor in the drive for carbon neutrality and carbon nanotubes(CNTs)may have an important role in this.Their intrinsic sp2 covalent structure gives them excellent electrical conductivity,mechanical strength,and chemical stability,making them suitable for many uses in energy storage,such as lithium-ion batteries(LIBs).Currently,their use in LIBs mainly focuses on conductive networks,current collectors,and dry electrodes.The review outlines advances in the use of CNTs in the cathodes and anodes of LIBs,especially in the electrode fabrication and mechanical sensors,as well as providing insights into their future development.
文摘The rapid development of the information era has led to in-creased power consumption,which generates more heat.This requires more efficient thermal management systems,with the most direct ap-proach being the development of su-perior thermal interface materials(TIMs).Mesocarbon microbeads(MCMBs)have several desirable properties for this purpose,includ-ing high thermal conductivity and excellent thermal stability.Although their thermal conductivity(K)may not be exceptional among all carbon materials,their ease of production and low cost make them ideal filler materials for developing a new generation of carbon-based TIMs.We report the fabrication of high-performance TIMs by incorporating MCMBs in a polyimide(PI)framework,producing highly graphitized PI/MCMB(PM)foams and anisotropic polydimethylsiloxane/PM(PDMS/PM)composites with a high thermal conductivity using directional freezing and high-temperature thermal annealing.The resulting materials had a high through-plane(TP)K of 15.926 W·m^(−1)·K^(−1),4.83 times that of conventional thermally conductive silicone pads and 88.5 times higher than that of pure PDMS.The composites had excellent mechanical properties and thermal stability,meeting the de-mands of modern electronic products for integration,multi-functionality,and miniaturization.
基金supported by the National Natural Science Foundation of China (Grant Nos. 22475179 and 22275173)。
文摘Realizing effective enhancement in the thermally conductive performance of polymer bonded explosives(PBXs) is vital for improving the resultant environmental adaptabilities of the PBXs composites. Herein, a kind of primary-secondary thermally conductive network was designed by water-suspension granulation, surface coating, and hot-pressing procedures in the graphene-based PBXs composites to greatly increase the thermal conductive performance of the composites. The primary network with a threedimensional structure provided the heat-conducting skeleton, while the secondary network in the polymer matrix bridged the primary network to increase the network density. The enhancement efficiency in the thermally conductive performance of the composites reached the highest value of 59.70% at a primary-secondary network ratio of 3:1. Finite element analysis confirmed the synergistic enhancement effect of the primary and secondary thermally conductive networks. This study introduces an innovative approach to designing network structures for PBX composites, significantly enhancing their thermal conductivity.
基金funded by Zhijian Laboratory Open Fund,Rocket Force University of Engineering(Grant No.2023-ZJSYS-KF01-03).
文摘During the storage of composite propellants, the migration of plasticizers and other unbonded additives at the interfaces of liner adhesives has garnered significant attention in understanding liner failure mechanisms, aging processes, and safety performance. However, there is currently no non-destructive and quantitative detection method for migration of plasticizers in propellant liner. In this study, we developed a HTPB sensing liner by incorporating conductive fillers-namely carbon black(CB), carbon nanotubes(CNTs), and graphene nanoplatelets(GNP)-into the HTPB matrix. The synergistic interaction between CNTs and GNP facilitates the formation of a tunneling conductive network that imparts electrical conductivity to the HTPB liner. To elucidate the functional relationship between conductivity and nitroglycerin(NG) migration, we applied the HTPB sensing liner onto double base propellant surfaces and measured both the conductivity of the sensing layer and NG migration during a 71°C accelerated aging experiment. The results shows that when CNTs/GNP content reaches 3wt%, there is an exponential correlation between conductivity and NG migration with a fitting degree of 0.9652;the average response sensitivity of ΔR/R0 relative to NG migration is calculated as 41.69, with an average deviation of merely5.67% between NG migrations derived from conductivity fittings compared to those obtained via TGA testing results. Overall, this sensing liner exhibits excellent capabilities for detecting NG migration nondestructively and quantitatively while offering a novel approach for assessing interfacial component migrations as well as debonding defects in propellants-a promising avenue for future self-monitoring strategies regarding propellant integrity.
基金supported by the Natural Science Foundation of Shanxi Province(Grant No.202203021221120)The Open Fund of MCRI-Shannxi Laboratory of Energetic Materials(Grant No.204-J-2024-2622)。
文摘This study prepared a class of RDX-based composite microspheres(RAF)containing ADN and FKM2602.The reaction kinetics of RAF composite microspheres were effectively improved by maintaining the system's high energy and safety performance.In the close packing state,when the heating rate is rapid,the thermal stability of RAF composite microspheres is better than that of RDX;the close packing state will reduce the degree of freedom of RDX and ADN reaction but will increase the degree of freedom of RAF composite microsphere reaction.The thermal conductivity of RAF composite microspheres is close to that of RDX.In the ignition experiment,the flame of RAF composite microspheres can be maintained without the external heat source.Regarding safety,the H50of RAF composite microspheres was 274.04%higher than that of RDX.The detonation velocity of RAF composite microspheres is slightly higher than that of raw material RDX.Overall,these findings highlight the effectiveness of ADN in enhancing the reaction kinetics of RDX-based composites.
基金Project(52276068)supported by the National Natural Science Foundation of China。
文摘This study examines the intricate occurrences of thermal and solutal Marangoni convection in three-layered flows of viscous fluids,with a particular emphasis on their relevance to renewable energy systems.This research examines the flow of a three-layered viscous fluid,considering the combined influence of heat and solutal buoyancy driven Rayleigh-Bénard convection,as well as thermal and solutal Marangoni convection.The homotopy perturbation method is used to examine and simulate complex fluid flow and transport phenomena,providing important understanding of the fundamental physics and assisting in the optimization of various battery configurations.The inquiry examines the primary elements that influence Marangoni convection and its impact on battery performance,providing insights on possible enhancements in energy storage devices.The findings indicate that the velocity profiles shown graphically exhibit a prominent core zone characterized by the maximum speed,which progressively decreases as it approaches the walls of the channel.This study enhances our comprehension of fluid dynamics and the transmission of heat and mass in intricate systems,which has substantial ramifications for the advancement of sustainable energy solutions.
基金Project(CSTC 2004AA7008) supported by the State I mportant Project of the Science and Technology
文摘Physiological parameters of people and enact assessment standard of indoor thermal environment that are appropriate to our national conditions were explored from the perspective of physiology. From December 2005 to January 2006, nerve conduction velocities and skin temperatures of 20 healthy students were tested with questionnaire investigation. The results show that the nerve conduction velocities as well as skin temperatures present an obvious decline trend in a continuous draught, and that the nerve conduction velocities and skin temperatures have a definite linear relationship. Draught velocity is an important factor in winter that affects body comfort, and the subjects are sensitive to air velocity.
文摘走航式海洋多参数剖面测量系统(moving vessel profiler,MVP)是一种集成程度和自动化程度都较高的海洋调查设备,能对海洋多要素进行同时观测,获得水平方向的高分辨率数据资料。由于温度和电导率传感器响应时间的不匹配,MVP下放速度过快(峰值速度4 m/s)而造成非常明显的盐度尖峰现象。本研究结合Fofonoff(F)法、时间常数指数递归数字滤波(Giles and McDougall,GM)法和Grose提出的盐度尖峰订正方案,提出了一种新的方法,即MCT(match conductivity and temperature response time)法,通过对压力、温度和电导率传感器进行响应时间的匹配来减弱盐度尖峰。将SBE-9型CTD资料作为标准,发现订正后的资料与CTD盐度曲线的互相关系数为0.917,误差比订正前减小80%。对比35°N断面修正前后的盐度资料,订正后温盐跃层处出现的低盐区域消失。MVP的应用比常规海洋调查仪器CTD对于海洋现象的观测更有优势。
基金Projects(51974225,51674188,51874229,51904224,51904225,51704229)supported by the National Natural Science Foundation of ChinaProject(2018KJXX-083)supported by the Shaanxi Innovative Talents Cultivate Program-New-Star Plan of Science and Technology,China+2 种基金Projects(2018JM5161,2018JQ5183,2015JM-074)supported by the Natural Science Basic Research Plan of Shaanxi Province,ChinaProject(19JK0543)supported by the Scientific Research Program funded by Education Department of Shaanxi Province,ChinaProject(2018YQ201)supported by the Outstanding Youth Science Fund of Xi’an University of Science and Technology,China。
文摘Based on the collaborative exploitation of deep mineral resources and geothermal resources, the thermal accumulation process of cemented tailings backfill(CTB) was studied by numerical simulation. The effects of thermal accumulation time, slurry proportions and temperature conditions on the thermal accumulation of backfill are analyzed, the influence of the heat conduction between backfill and surrounding rock, the heat convection between backfill and airflow on thermal accumulation were compared simultaneously. The results show that the total thermal accumulation capacity increases by approximately 85% within 10-90 d. The influence of surrounding rock temperature and initial temperature on total thermal accumulation capacity is more significant and it is approximately 2 times of the influence of slurry proportions under the conditions of this study. It is clear that the rise of surrounding rock temperature and the decrease of initial temperature can improve the thermal accumulation capacity more effectively. Moreover, the heat conduction accounts for a considerable proportion in the process of thermal accumulation, the average heat conduction capacity is approximately 25 times of the heat convection capacity. This study can provide the theoretical basis and application reference for the optimization of thermal accumulation process of CTB in the exploitation of geothermal resources.