Copper-based azide(Cu(N_(3))2 or CuN_(3),CA)chips synthesized by in-situ azide reaction and utilized in miniaturized explosive systems has become a hot research topic in recent years.However,the advantages of in-situ ...Copper-based azide(Cu(N_(3))2 or CuN_(3),CA)chips synthesized by in-situ azide reaction and utilized in miniaturized explosive systems has become a hot research topic in recent years.However,the advantages of in-situ synthesis method,including small size and low dosage,bring about difficulties in quantitative analysis and differences in ignition capabilities of CA chips.The aim of present work is to develop a simplified quantitative analysis method for accurate and safe analysis of components in CA chips to evaluate and investigate the corresponding ignition ability.In this work,Cu(N_(3))2 and CuN_(3)components in CA chips were separated through dissolution and distillation by utilizing the difference in solubility and corresponding content was obtained by measuring N_(3)-concentration through spectrophotometry.The spectrophotometry method was optimized by studying influencing factors and the recovery rate of different separation methods was studied,ensuring the accuracy and reproducibility of test results.The optimized method is linear in range from 1.0-25.0 mg/L,with a correlation coefficient R^(2)=0.9998,which meets the requirements of CA chips with a milligram-level content test.Compared with the existing ICP method,component analysis results of CA chips obtained by spectrophotometry are closer to real component content in samples and have satisfactory accuracy.Moreover,as its application in miniaturized explosive systems,the ignition ability of CA chips with different component contents for direct ink writing CL-20 and the corresponding mechanism was studied.This study provided a basis and idea for the design and performance evaluation of CA chips in miniaturized explosive systems.展开更多
Due to the disturbances arising from the coherence of reflected waves and from echo noise,problems such as limitations,instability and poor accuracy exist with the current quantitative analysis methods.According to th...Due to the disturbances arising from the coherence of reflected waves and from echo noise,problems such as limitations,instability and poor accuracy exist with the current quantitative analysis methods.According to the intrinsic features of GPR signals and wavelet time–frequency analysis,an optimal wavelet basis named GPR3.3 wavelet is constructed via an improved biorthogonal wavelet construction method to quantitatively analyse the GPR signal.A new quantitative analysis method based on the biorthogonal wavelet(the QAGBW method)is proposed and applied in the analysis of analogue and measured signals.The results show that compared with the Bayesian frequency-domain blind deconvolution and with existing wavelet bases,the QAGBW method based on optimal wavelet can limit the disturbance from factors such as the coherence of reflected waves and echo noise,improve the quantitative analytical precision of the GPR signal,and match the minimum thickness for quantitative analysis with the vertical resolution of GPR detection.展开更多
Use of the scanning electron microscope (SEM) to characterize ores provides mineralogists and metallurgists with invaluable information for the optimisation of processes. Manually obtaining relevant information such a...Use of the scanning electron microscope (SEM) to characterize ores provides mineralogists and metallurgists with invaluable information for the optimisation of processes. Manually obtaining relevant information such as, for example, mineral coatings that may interfere with flotation, mineral separations, the location of values, mineralogical or process reasons for low recovery, etc, can be exhausting and time consuming. For this reason, automated SEM methods for mineralogical characterisation have been devised. These methods rely on qualitative analyses of the samples using EDX or BSD grey levels to classify the phases present. The non-quantitative nature of the analyses means that other techniques, such as electron microprobe analysis (EMPA), must be used in conjunction with the SEM to obtain quantitative information of the sample. To overcome this limitation, Carl Zeiss has devised a method for the quantitative analysis of the mineralogy of any ore or ore-derived processed material; allowing for the full quantitative evaluation of a resource to be performed automatically by the SEM.展开更多
The main methods of the second phase quantitative analysis in current material science researches are manual recognition and extracting by using software such as Image Tool and Nano Measurer. The weaknesses such as hi...The main methods of the second phase quantitative analysis in current material science researches are manual recognition and extracting by using software such as Image Tool and Nano Measurer. The weaknesses such as high labor intensity and low accuracy statistic results exist in these methods. In order to overcome the shortcomings of the current methods, the Ω phase in A1-Cu-Mg-Ag alloy is taken as the research object and an algorithm based on the digital image processing and pattern recognition is proposed and implemented to do the A1 alloy TEM (transmission electron microscope) digital images process and recognize and extract the information of the second phase in the result image automatically. The top-hat transformation of the mathematical morphology, as well as several imaging processing technologies has been used in the proposed algorithm. Thereinto, top-hat transformation is used for elimination of asymmetric illumination and doing Multi-layer filtering to segment Ω phase in the TEM image. The testing results are satisfied, which indicate that the Ω phase with unclear boundary or small size can be recognized by using this method. The omission of these two kinds of Ω phase can be avoided or significantly reduced. More Ω phases would be recognized (growing rate minimum to 2% and maximum to 400% in samples), accuracy of recognition and statistics results would be greatly improved by using this method. And the manual error can be eliminated. The procedure recognizing and making quantitative analysis of information in this method is automatically completed by the software. It can process one image, including recognition and quantitative analysis in 30 min, but the manual method such as using Image Tool or Nano Measurer need 2 h or more. The labor intensity is effectively reduced and the working efficiency is greatly improved.展开更多
This paper summarized the quantitative analysis methods of tea saponin,including gravimetry,colorimetry,fluorescence spectrophotometry,thin layer scanning and HPLC method.Through the summary of quantitative analysis m...This paper summarized the quantitative analysis methods of tea saponin,including gravimetry,colorimetry,fluorescence spectrophotometry,thin layer scanning and HPLC method.Through the summary of quantitative analysis methods,this paper tried to compare different quantitative determination methods so as to provide a guidance to establish the standard quantitative analysis method of tea saponin from various sources.展开更多
The strength of cement-based materials,such as mortar,concrete and cement paste backfill(CPB),depends on its microstructures(e.g.pore structure and arrangement of particles and skeleton).Numerous studies on the relati...The strength of cement-based materials,such as mortar,concrete and cement paste backfill(CPB),depends on its microstructures(e.g.pore structure and arrangement of particles and skeleton).Numerous studies on the relationship between strength and pore structure(e.g.,pore size and its distribution)were performed,but the micro-morphology characteristics have been rarely concerned.Texture describing the surface properties of the sample is a global feature,which is an effective way to quantify the micro-morphological properties.In statistical analysis,GLCM features and Tamura texture are the most representative methods for characterizing the texture features.The mechanical strength and section image of the backfill sample prepared from three different solid concentrations of paste were obtained by uniaxial compressive strength test and scanning electron microscope,respectively.The texture features of different SEM images were calculated based on image analysis technology,and then the correlation between these parameters and the strength was analyzed.It was proved that the method is effective in the quantitative analysis on the micro-morphology characteristics of CPB.There is a significant correlation between the texture features and the unconfined compressive strength,and the prediction of strength is feasible using texture parameters of the CPB microstructure.展开更多
Most important agricultural traits of crops are controlled by many genes. These traits have complicated genetic basis and are difficult for genetic analysis. Due to application of molecular marker techniques in the la...Most important agricultural traits of crops are controlled by many genes. These traits have complicated genetic basis and are difficult for genetic analysis. Due to application of molecular marker techniques in the last two decades, genetic and molecular dissection of quantitative traits has become possible. In this paper, recent progress on mapping of quantitative trait loci in crops was reviewed.展开更多
为确定凝胶电泳后条带中DNA的长度和浓度,该文提出了一种通过DNA荧光强度精确分析DNA长度及浓度的有效方法。对D2000 DNA ladder进行凝胶电泳,采集图像并进行处理。利用荧光强度与DNA浓度之间的线性关系以及迁移距离与DNA长度的线性关...为确定凝胶电泳后条带中DNA的长度和浓度,该文提出了一种通过DNA荧光强度精确分析DNA长度及浓度的有效方法。对D2000 DNA ladder进行凝胶电泳,采集图像并进行处理。利用荧光强度与DNA浓度之间的线性关系以及迁移距离与DNA长度的线性关系进行数据分析。结果显示:采用SYBR Green I作为荧光染料电泳DNA时,图像中各像素点中的绿色与红色灰度值可以反映DNA的特征信息,且绿色灰度值明显高于红色灰度值;对于小于2000 bp的DNA片段,其分子量与迁移距离呈反比例函数关系,当二者分别取对数时,其相关系数达0.971,可用于建立DNA分子量与迁移距离的数学模型以计算DNA分子量;通过计算电泳峰峰值及电泳峰积分面积,发现对于浓度比为2∶1的两个DNA条带,二者的比值为2.16与1.96、2.11与1.94、2.16与1.93,表明电泳峰积分面积能更有效地反映DNA的真实浓度值。该研究对于核酸凝胶电泳仪的开发具有重要应用价值。展开更多
目的系统分析食品抗菌膜领域的发展历程以及研究动态、热点和趋势。方法基于中国知网(CNKI)和Web of Science(WOS)数据库,采用CiteSpace可视化分析软件,对2000—2024年食品抗菌膜领域的文献进行量化统计分析。结果国内外发文数量稳步增...目的系统分析食品抗菌膜领域的发展历程以及研究动态、热点和趋势。方法基于中国知网(CNKI)和Web of Science(WOS)数据库,采用CiteSpace可视化分析软件,对2000—2024年食品抗菌膜领域的文献进行量化统计分析。结果国内外发文数量稳步增长,多见于食品领域高质量期刊;中国、伊朗和印度为主要发文国家,其中中国贡献最大,占比42.83%;研究主要集中在高校和科研院所,其中中国的江南大学(21篇)和伊朗的阿扎德大学(40篇)发文量居前,全球发文机构前10名中,中国占7席。该领域核心作者包括国内44位和国外37位;研究热点涵盖制备工艺、抗菌性能和应用效果,前沿领域聚焦于天然抗菌剂和抗菌性能研究。结论全球食品抗菌膜研究呈现稳步推进态势,研究深度和广度不断扩展,热度逐年攀升;中国在全球学术影响力显著,但仍有提升空间。该领域跨团队、跨国界的学术交流与合作仍显不足,未来需进一步加强;预计抗菌机理及性能研究仍是主要方向。展开更多
玉米育种过程中,灌浆期籽粒含水率检测时,通常需要脱粒,采集穗中间200粒为检测样本。为了保护亲本,避免破坏性检测,该研究提出一种基于近红外光谱的灌浆期玉米籽粒水分定量分析通用模型,用于灌浆期玉米籽粒水分的田间原位检测。首先构建...玉米育种过程中,灌浆期籽粒含水率检测时,通常需要脱粒,采集穗中间200粒为检测样本。为了保护亲本,避免破坏性检测,该研究提出一种基于近红外光谱的灌浆期玉米籽粒水分定量分析通用模型,用于灌浆期玉米籽粒水分的田间原位检测。首先构建GA-IRIV-DS光谱数据处理策略。利用遗传算法(genetic algorithm,GA)和迭代保留信息变量(iterative retention of information variables,IRIV)二次波长筛选方法,提取光谱数据中有效的水分变量信息,减小特征空间维度的同时提高模型预测精度;再结合直接校正算法(direct standardization,DS),降低预测样本与建模样本的差异性,将玉米灌浆期穗尖部籽粒光谱数据校正为中间200籽粒的光谱,使水分定量分析模型能够具备中间200籽粒和穗尖部籽粒2种检测样本的通用性。在GA-IRIV-DS光谱数据处理策略的基础上,构建基于偏最小二乘法(partial lpeast squares regression,PLSR)的水分定量分析通用模型。经过验证,GA-IRIV-DS光谱数据处理策略校正后的光谱差异性降低了59.4%。为了进一步验证GA-IRIV-DS光谱数据处理策略的有效性,分析了GA+IRIVN组合波长筛选提取光谱特征,并分别与全光谱、多种典型波长筛选方法结合DS方法构建基于偏最小二乘法(PLSR)的水分定量分析模型结果相比较。试验结果表明,两种样本预测集GA-IRIVN-DS-PLSR模型效果均优于全光谱和其他模型,中间籽粒样本和穗尖部籽粒样本的预测决定系数(R^(2))达到了0.9715和0.9012,均方根误差(RMSEP)较全光谱下降了80.10%和64.60%。证明基于GA-IRIVN-DS光谱数据处理策略建立的近红外光谱水分定量分析模型具有一定泛化能力,可以为玉米育种过程中,减少检测过程中的样本破坏和提高检测效率提供可行的参考方法。展开更多
基金the financial support provided by the National Natural Science Foundation of China(Grant No.11872013).
文摘Copper-based azide(Cu(N_(3))2 or CuN_(3),CA)chips synthesized by in-situ azide reaction and utilized in miniaturized explosive systems has become a hot research topic in recent years.However,the advantages of in-situ synthesis method,including small size and low dosage,bring about difficulties in quantitative analysis and differences in ignition capabilities of CA chips.The aim of present work is to develop a simplified quantitative analysis method for accurate and safe analysis of components in CA chips to evaluate and investigate the corresponding ignition ability.In this work,Cu(N_(3))2 and CuN_(3)components in CA chips were separated through dissolution and distillation by utilizing the difference in solubility and corresponding content was obtained by measuring N_(3)-concentration through spectrophotometry.The spectrophotometry method was optimized by studying influencing factors and the recovery rate of different separation methods was studied,ensuring the accuracy and reproducibility of test results.The optimized method is linear in range from 1.0-25.0 mg/L,with a correlation coefficient R^(2)=0.9998,which meets the requirements of CA chips with a milligram-level content test.Compared with the existing ICP method,component analysis results of CA chips obtained by spectrophotometry are closer to real component content in samples and have satisfactory accuracy.Moreover,as its application in miniaturized explosive systems,the ignition ability of CA chips with different component contents for direct ink writing CL-20 and the corresponding mechanism was studied.This study provided a basis and idea for the design and performance evaluation of CA chips in miniaturized explosive systems.
基金Projects(51678071,51278071)supported by the National Natural Science Foundation of ChinaProjects(14KC06,CX2015BS02)supported by Changsha University of Science&Technology,China
文摘Due to the disturbances arising from the coherence of reflected waves and from echo noise,problems such as limitations,instability and poor accuracy exist with the current quantitative analysis methods.According to the intrinsic features of GPR signals and wavelet time–frequency analysis,an optimal wavelet basis named GPR3.3 wavelet is constructed via an improved biorthogonal wavelet construction method to quantitatively analyse the GPR signal.A new quantitative analysis method based on the biorthogonal wavelet(the QAGBW method)is proposed and applied in the analysis of analogue and measured signals.The results show that compared with the Bayesian frequency-domain blind deconvolution and with existing wavelet bases,the QAGBW method based on optimal wavelet can limit the disturbance from factors such as the coherence of reflected waves and echo noise,improve the quantitative analytical precision of the GPR signal,and match the minimum thickness for quantitative analysis with the vertical resolution of GPR detection.
文摘Use of the scanning electron microscope (SEM) to characterize ores provides mineralogists and metallurgists with invaluable information for the optimisation of processes. Manually obtaining relevant information such as, for example, mineral coatings that may interfere with flotation, mineral separations, the location of values, mineralogical or process reasons for low recovery, etc, can be exhausting and time consuming. For this reason, automated SEM methods for mineralogical characterisation have been devised. These methods rely on qualitative analyses of the samples using EDX or BSD grey levels to classify the phases present. The non-quantitative nature of the analyses means that other techniques, such as electron microprobe analysis (EMPA), must be used in conjunction with the SEM to obtain quantitative information of the sample. To overcome this limitation, Carl Zeiss has devised a method for the quantitative analysis of the mineralogy of any ore or ore-derived processed material; allowing for the full quantitative evaluation of a resource to be performed automatically by the SEM.
基金Project(51171209)supported by the National Natural Science Foundation of China
文摘The main methods of the second phase quantitative analysis in current material science researches are manual recognition and extracting by using software such as Image Tool and Nano Measurer. The weaknesses such as high labor intensity and low accuracy statistic results exist in these methods. In order to overcome the shortcomings of the current methods, the Ω phase in A1-Cu-Mg-Ag alloy is taken as the research object and an algorithm based on the digital image processing and pattern recognition is proposed and implemented to do the A1 alloy TEM (transmission electron microscope) digital images process and recognize and extract the information of the second phase in the result image automatically. The top-hat transformation of the mathematical morphology, as well as several imaging processing technologies has been used in the proposed algorithm. Thereinto, top-hat transformation is used for elimination of asymmetric illumination and doing Multi-layer filtering to segment Ω phase in the TEM image. The testing results are satisfied, which indicate that the Ω phase with unclear boundary or small size can be recognized by using this method. The omission of these two kinds of Ω phase can be avoided or significantly reduced. More Ω phases would be recognized (growing rate minimum to 2% and maximum to 400% in samples), accuracy of recognition and statistics results would be greatly improved by using this method. And the manual error can be eliminated. The procedure recognizing and making quantitative analysis of information in this method is automatically completed by the software. It can process one image, including recognition and quantitative analysis in 30 min, but the manual method such as using Image Tool or Nano Measurer need 2 h or more. The labor intensity is effectively reduced and the working efficiency is greatly improved.
基金supported by National Key Technology R&D Program in the 12th Five Year Plan of China (Project No.2012BAD36B06-2)
文摘This paper summarized the quantitative analysis methods of tea saponin,including gravimetry,colorimetry,fluorescence spectrophotometry,thin layer scanning and HPLC method.Through the summary of quantitative analysis methods,this paper tried to compare different quantitative determination methods so as to provide a guidance to establish the standard quantitative analysis method of tea saponin from various sources.
基金Project(51722401)supported by the National Natural Science Foundation for Excellent Young Scholars of ChinaProject(FRF-TP-18-003C1)supported by the Fundamental Research Funds for the Central Universities,ChinaProject(51734001)supported by the Key Program of National Natural Science Foundation of China
文摘The strength of cement-based materials,such as mortar,concrete and cement paste backfill(CPB),depends on its microstructures(e.g.pore structure and arrangement of particles and skeleton).Numerous studies on the relationship between strength and pore structure(e.g.,pore size and its distribution)were performed,but the micro-morphology characteristics have been rarely concerned.Texture describing the surface properties of the sample is a global feature,which is an effective way to quantify the micro-morphological properties.In statistical analysis,GLCM features and Tamura texture are the most representative methods for characterizing the texture features.The mechanical strength and section image of the backfill sample prepared from three different solid concentrations of paste were obtained by uniaxial compressive strength test and scanning electron microscope,respectively.The texture features of different SEM images were calculated based on image analysis technology,and then the correlation between these parameters and the strength was analyzed.It was proved that the method is effective in the quantitative analysis on the micro-morphology characteristics of CPB.There is a significant correlation between the texture features and the unconfined compressive strength,and the prediction of strength is feasible using texture parameters of the CPB microstructure.
文摘Most important agricultural traits of crops are controlled by many genes. These traits have complicated genetic basis and are difficult for genetic analysis. Due to application of molecular marker techniques in the last two decades, genetic and molecular dissection of quantitative traits has become possible. In this paper, recent progress on mapping of quantitative trait loci in crops was reviewed.
文摘为确定凝胶电泳后条带中DNA的长度和浓度,该文提出了一种通过DNA荧光强度精确分析DNA长度及浓度的有效方法。对D2000 DNA ladder进行凝胶电泳,采集图像并进行处理。利用荧光强度与DNA浓度之间的线性关系以及迁移距离与DNA长度的线性关系进行数据分析。结果显示:采用SYBR Green I作为荧光染料电泳DNA时,图像中各像素点中的绿色与红色灰度值可以反映DNA的特征信息,且绿色灰度值明显高于红色灰度值;对于小于2000 bp的DNA片段,其分子量与迁移距离呈反比例函数关系,当二者分别取对数时,其相关系数达0.971,可用于建立DNA分子量与迁移距离的数学模型以计算DNA分子量;通过计算电泳峰峰值及电泳峰积分面积,发现对于浓度比为2∶1的两个DNA条带,二者的比值为2.16与1.96、2.11与1.94、2.16与1.93,表明电泳峰积分面积能更有效地反映DNA的真实浓度值。该研究对于核酸凝胶电泳仪的开发具有重要应用价值。
文摘目的系统分析食品抗菌膜领域的发展历程以及研究动态、热点和趋势。方法基于中国知网(CNKI)和Web of Science(WOS)数据库,采用CiteSpace可视化分析软件,对2000—2024年食品抗菌膜领域的文献进行量化统计分析。结果国内外发文数量稳步增长,多见于食品领域高质量期刊;中国、伊朗和印度为主要发文国家,其中中国贡献最大,占比42.83%;研究主要集中在高校和科研院所,其中中国的江南大学(21篇)和伊朗的阿扎德大学(40篇)发文量居前,全球发文机构前10名中,中国占7席。该领域核心作者包括国内44位和国外37位;研究热点涵盖制备工艺、抗菌性能和应用效果,前沿领域聚焦于天然抗菌剂和抗菌性能研究。结论全球食品抗菌膜研究呈现稳步推进态势,研究深度和广度不断扩展,热度逐年攀升;中国在全球学术影响力显著,但仍有提升空间。该领域跨团队、跨国界的学术交流与合作仍显不足,未来需进一步加强;预计抗菌机理及性能研究仍是主要方向。
文摘玉米育种过程中,灌浆期籽粒含水率检测时,通常需要脱粒,采集穗中间200粒为检测样本。为了保护亲本,避免破坏性检测,该研究提出一种基于近红外光谱的灌浆期玉米籽粒水分定量分析通用模型,用于灌浆期玉米籽粒水分的田间原位检测。首先构建GA-IRIV-DS光谱数据处理策略。利用遗传算法(genetic algorithm,GA)和迭代保留信息变量(iterative retention of information variables,IRIV)二次波长筛选方法,提取光谱数据中有效的水分变量信息,减小特征空间维度的同时提高模型预测精度;再结合直接校正算法(direct standardization,DS),降低预测样本与建模样本的差异性,将玉米灌浆期穗尖部籽粒光谱数据校正为中间200籽粒的光谱,使水分定量分析模型能够具备中间200籽粒和穗尖部籽粒2种检测样本的通用性。在GA-IRIV-DS光谱数据处理策略的基础上,构建基于偏最小二乘法(partial lpeast squares regression,PLSR)的水分定量分析通用模型。经过验证,GA-IRIV-DS光谱数据处理策略校正后的光谱差异性降低了59.4%。为了进一步验证GA-IRIV-DS光谱数据处理策略的有效性,分析了GA+IRIVN组合波长筛选提取光谱特征,并分别与全光谱、多种典型波长筛选方法结合DS方法构建基于偏最小二乘法(PLSR)的水分定量分析模型结果相比较。试验结果表明,两种样本预测集GA-IRIVN-DS-PLSR模型效果均优于全光谱和其他模型,中间籽粒样本和穗尖部籽粒样本的预测决定系数(R^(2))达到了0.9715和0.9012,均方根误差(RMSEP)较全光谱下降了80.10%和64.60%。证明基于GA-IRIVN-DS光谱数据处理策略建立的近红外光谱水分定量分析模型具有一定泛化能力,可以为玉米育种过程中,减少检测过程中的样本破坏和提高检测效率提供可行的参考方法。