期刊文献+
共找到15,371篇文章
< 1 2 250 >
每页显示 20 50 100
基于改进Vision Transformer的水稻叶片病害图像识别
1
作者 朱周华 周怡纳 +1 位作者 侯智杰 田成源 《电子测量技术》 北大核心 2025年第10期153-160,共8页
水稻叶片病害智能识别在现代农业生产中具有重要意义。针对传统Vision Transformer网络缺乏归纳偏置,难以有效捕捉图像局部细节特征的问题,提出了一种改进的Vision Transformer模型。该模型通过引入内在归纳偏置,增强了对多尺度上下文... 水稻叶片病害智能识别在现代农业生产中具有重要意义。针对传统Vision Transformer网络缺乏归纳偏置,难以有效捕捉图像局部细节特征的问题,提出了一种改进的Vision Transformer模型。该模型通过引入内在归纳偏置,增强了对多尺度上下文以及局部与全局依赖关系的建模能力,同时降低了对大规模数据集的需求。此外,Vision Transformer中的多层感知器模块被Kolmogorov-Arnold网络结构取代,从而提升了模型对复杂特征的提取能力和可解释性。实验结果表明,所提模型在水稻叶片病害识别任务中取得了优异的性能,识别准确率达到了98.62%,较原始ViT模型提升了6.2%,显著提高了对水稻叶片病害的识别性能。 展开更多
关键词 水稻叶片病害 图像识别 vision Transformer网络 归纳偏置 局部特征
在线阅读 下载PDF
Vision Transformer深度学习模型在前列腺癌识别中的价值
2
作者 李梦娟 金龙 +2 位作者 尹胜男 计一丁 丁宁 《中国医学计算机成像杂志》 北大核心 2025年第3期396-401,共6页
目的:旨在探讨Vision Transformer(ViT)深度学习模型在前列腺癌(PCa)识别中的应用价值.方法:回顾性分析了480例接受磁共振成像(MRI)检查的患者影像资料.采用TotalSegmentator模型自动分割前列腺区域,通过ViT深度学习方法分别构建基于T2... 目的:旨在探讨Vision Transformer(ViT)深度学习模型在前列腺癌(PCa)识别中的应用价值.方法:回顾性分析了480例接受磁共振成像(MRI)检查的患者影像资料.采用TotalSegmentator模型自动分割前列腺区域,通过ViT深度学习方法分别构建基于T2加权像(T2WI)、基于表观弥散系数(ADC)图和基于两者结合的三个ViT模型.结果:在PCa的识别能力上,结合模型在训练组和测试组上的受试者工作特征(ROC)曲线下面积(AUC)分别为0.961和0.980,优于仅基于单一成像序列构建的ViT模型.在基于单一序列构建的ViT模型中,基于ADC图的模型相较于基于T2WI的模型表现更佳.此外,决策曲线分析显示结合模型提供了更大的临床效益.结论:ViT深度学习模型在前列腺癌识别中具有较高的诊断准确性和潜在价值. 展开更多
关键词 vision Transformer 深度学习 前列腺癌 自动分割 磁共振成像
在线阅读 下载PDF
基于改进Vision Transformer的遥感图像分类研究
3
作者 李宗轩 冷欣 +1 位作者 章磊 陈佳凯 《林业机械与木工设备》 2025年第6期31-35,共5页
通过遥感图像分类能够快速有效获取森林区域分布,为林业资源管理监测提供支持。Vision Transformer(ViT)凭借优秀的全局信息捕捉能力在遥感图像分类任务中广泛应用。但Vision Transformer在浅层特征提取时会冗余捕捉其他局部特征而无法... 通过遥感图像分类能够快速有效获取森林区域分布,为林业资源管理监测提供支持。Vision Transformer(ViT)凭借优秀的全局信息捕捉能力在遥感图像分类任务中广泛应用。但Vision Transformer在浅层特征提取时会冗余捕捉其他局部特征而无法有效捕获关键特征,并且Vision Transformer在将图像分割为patch过程中可能会导致边缘等细节信息的丢失,从而影响分类准确性。针对上述问题提出一种改进Vision Transformer,引入了STA(Super Token Attention)注意力机制来增强Vision Transformer对关键特征信息的提取并减少计算冗余度,还通过加入哈尔小波下采样(Haar Wavelet Downsampling)在减少细节信息丢失的同时增强对图像不同尺度局部和全局信息的捕获能力。通过实验在AID数据集上达到了92.98%的总体准确率,证明了提出方法的有效性。 展开更多
关键词 遥感图像分类 vision Transformer 哈尔小波下采样 STA注意力机制
在线阅读 下载PDF
DAQ:基于分治策略的自适应VisionTransformer低位宽量化方法 被引量:1
4
作者 吕倩茹 许金伟 +1 位作者 姜晶菲 李东升 《计算机研究与发展》 北大核心 2025年第6期1530-1546,共17页
视觉Transformer(Vision Transformer,ViT)模型在计算机视觉领域的多项任务中取得显著效果.但ViT的复杂结构和计算开销限制了其在边缘计算设备中的部署.训练后量化(post-training quantization,PTQ)技术被广泛应用于ViT模型轻量化中以... 视觉Transformer(Vision Transformer,ViT)模型在计算机视觉领域的多项任务中取得显著效果.但ViT的复杂结构和计算开销限制了其在边缘计算设备中的部署.训练后量化(post-training quantization,PTQ)技术被广泛应用于ViT模型轻量化中以解决实际部署难题,但现有PTQ方法在低位宽量化中的性能损失较大.针对低比特量化场景,ViT的量化敏感层(如Softmax)与计算密集层(如线性变换)存在显著空间错位,且非高斯分布的激活值中隐含97%的类高斯聚集特性.由此,基于标准分数z-score方法提出分治自适应量化(divide-and-conquer and adaptive quantization,DAQ)方法,通过量化敏感度-计算-存储开销联合分析与硬件协同设计,实现精度与效率的联合优化.DAQ构建动态分治量化机制,通过动态感知的z-score方法实现正常值/离群值双域分割,均匀关联量化2个值域.在4-bit量化下,DAQ方法在分类任务上的Top-1精度最大提升4.37个百分点,目标检测任务最大精度提升达8.2个百分点,与基线模型相比误差平均低于0.4个百分点,超过最佳全精度模型0.1个百分点,接近实现无损的低位宽量化.另一方面,DAQ在硬件兼容设上适配TensorCore的INT4/INT8内核,以量化定点计算来减轻线性计算压力.实验表明,DAQ硬件适配后对线性计算部分有43%~86%的加速效果,为资源受限场景提供了算法-硬件协同优化的量化部署范式. 展开更多
关键词 视觉Transformer(ViT) 训练后量化(PTQ) 离群值 低比特量化 Z-SCORE 均匀关联量化
在线阅读 下载PDF
融合Vision Transformer与3D CNN的深度伪造视频篡改检测
5
作者 孙立信 吴永飞 +2 位作者 李心宇 任杰煌 刘西林 《计算机应用与软件》 北大核心 2025年第11期121-127,共7页
Deepfake技术的出现,使人们可以轻松地对人脸视频进行篡改,对社会造成巨大的危害。现有的篡改检测方法主要侧重于视频帧间的局部人脸区域空间特征变化检测,并没有考虑连续全局区域的时域特征,且不能检测视频帧中的细微空域特征变化。针... Deepfake技术的出现,使人们可以轻松地对人脸视频进行篡改,对社会造成巨大的危害。现有的篡改检测方法主要侧重于视频帧间的局部人脸区域空间特征变化检测,并没有考虑连续全局区域的时域特征,且不能检测视频帧中的细微空域特征变化。针对此问题,提出融合Vision Transformer和3D CNN的视频篡改检测方法ViT-3DCNN。该方法无需对人脸进行裁剪,直接学习视频帧间的连续时域特征以及每一帧的空间特征。实验结果表明,不依赖于人脸剪裁的情况下,ViT-3DCNN模型分别在DFDC数据集及Celeb-DF数据集上取得了93.3%与90.65%的分类准确性,充分验证了该模型在检测精度和泛化性等方面相较于现有检测方法具有明显的优势。 展开更多
关键词 伪造视频篡改检测 时空特征 vision Transformer 3D卷积
在线阅读 下载PDF
ViT-Count:面向冠层遮挡的Vision Transformer树木计数定位方法
6
作者 张乔一 张瑞 霍光煜 《北京林业大学学报》 北大核心 2025年第10期128-138,共11页
【目的】针对复杂场景中树木检测的挑战,如遮挡、背景干扰及密集分布等,本研究提出一种基于Vision Transformer(ViT)的树木检测方法(ViT-Count),提升模型对复杂场景中树木的检测精度与鲁棒性。【方法】采用ViT作为基础模型,其在捕捉图... 【目的】针对复杂场景中树木检测的挑战,如遮挡、背景干扰及密集分布等,本研究提出一种基于Vision Transformer(ViT)的树木检测方法(ViT-Count),提升模型对复杂场景中树木的检测精度与鲁棒性。【方法】采用ViT作为基础模型,其在捕捉图像中全局上下文信息方面具有天然优势,尤其适用于形态多变的复杂环境。设计针对树木的视觉提示调优VPT机制,其通过在特征中注入可学习提示(prompts),优化模型在林地高密度树冠、光照变化及不同树种结构下的特征提取能力,提高对不同林分类型的适应性。设计卷积模块的注意力机制模块,利用其在局部感知基础上的长距离依赖建模能力,有效强化模型对树木遮挡、重叠及形态相似目标的辨别能力,提高整体检测的鲁棒性与准确性。设计一个树木检测解码器,通过多层卷积、归一化、GELU激活与上采样操作逐步还原空间分辨率,以生成的目标密度图实现树木计数与定位。【结果】该方法在提升森林、城市场景下的树木检测鲁棒性的同时,增强了模型在多尺度树木目标上的泛化能力。在Larch Casebearer数据集和Urban Tree数据集上进行的实验显示,与其他主流模型相比,该方法的MAE和RMSE最多分别降低了2.53、3.99,表明其泛化能力更强,具有最优的树木检测性能。可视化实验结果表明,在密集森林场景和复杂城市场景中,所提模型均具有较高的树木检测准确率。消融实验的结果证明了模型主要模块的有效性。【结论】基于Vision Transformer的面向复杂场景的树木计数与定位方法能够充分发挥ViT的全局建模能力及视觉提示调优机制任务适应性,结合卷积模块的注意力机制,有效提升复杂场景树木计数与定位的精度与鲁棒性。 展开更多
关键词 目标识别 树木计数 树木定位 复杂场景 vision Transformer(ViT) 视觉提示调优(VPT) 注意力机制
在线阅读 下载PDF
Gender differences in the burden of near vision loss in China:An analysis based on GBD 2021 data
7
作者 LIU Yu ZHU Liping +4 位作者 LIN Yanhui WANG Yanbing XIONG Kun LI Xuhong YAN Wenguang 《中南大学学报(医学版)》 北大核心 2025年第6期1030-1041,共12页
Objective:Near vision loss(NVL)is one of the leading causes of visual impairment worldwide,exerting a profound impact on individual quality of life and socio-economic development.This study aims to analyze the burden ... Objective:Near vision loss(NVL)is one of the leading causes of visual impairment worldwide,exerting a profound impact on individual quality of life and socio-economic development.This study aims to analyze the burden of NVL in China by sex and age groups from 1990 to 2021 and to project trends over the next 15 years.Methods:Using data from the Global Burden of Disease(GBD)2021 database,we conducted descriptive analyses of NVL prevalence in China,calculated age-standardized prevalence rates(ASPR)and age-standardized disability-adjusted life years rates(ASDR)to compare burden differences between sexes and age groups,and applied an autoregressive integrated moving average(ARIMA)model to predict NVL trends for the next 15 years.The model selection was based on best-fit criteria to ensure reliable projections.Results:From 1990 to 2021,China’s ASPR of NVL rose from 10096.24/100000 to 15624.54/100000,and ASDR increased from 101.75/100000 to 158.75/100000.In 2021,ASPR(16551.70/100000)and ASDR(167.69/100000)were higher among females than males(14686.21/100000 and 149.76/100000,respectively).China ranked highest globally in both NVL cases and disability-adjusted life years(DALYs),with female burden significantly exceeding male burden.Projections indicated this trend and sex gap will persist until 2036.Compared with 1990,the prevalence cases and DALYs increased by 239.20%and 238.82%,respectively in 2021,with the highest burden among females and the 55−59 age group.The ARIMA model predicted continued increases in prevalence and DALYs by 2036,with females maintaining a higher burden than males.Conclusion:This study reveals a marked increase in the NVL burden in China and predicts continued growth in the coming years.Public health policies should prioritize NVL prevention and control,with special attention to women and middle-aged populations to mitigate long-term societal and health impacts. 展开更多
关键词 China near vision loss Global Burden of Disease database autoregressive integrated moving average model gender differences
在线阅读 下载PDF
基于改进Vision Transformer的局部光照一致性估计 被引量:1
8
作者 王杨 宋世佳 +3 位作者 王鹤琴 袁振羽 赵立军 吴其林 《计算机工程》 北大核心 2025年第2期312-321,共10页
光照一致性是增强现实(AR)系统中实现虚实有机融合的关键因素之一。由于拍摄视角的局限性和场景光照的复杂性,开发者在估计全景照明信息时通常忽略局部光照一致性,从而影响最终的渲染效果。为解决这一问题,提出一种基于改进视觉Transfor... 光照一致性是增强现实(AR)系统中实现虚实有机融合的关键因素之一。由于拍摄视角的局限性和场景光照的复杂性,开发者在估计全景照明信息时通常忽略局部光照一致性,从而影响最终的渲染效果。为解决这一问题,提出一种基于改进视觉Transformer(ViT)结构的局部光照一致性估计框架(ViTLight)。首先利用ViT编码器提取特征向量并计算回归球面谐波(SH)系数,进而恢复光照信息;其次改进ViT编码器结构,引入多头自注意力交互机制,采用卷积运算引导注意力头之间相互联系,在此基础上增加局部感知模块,扫描每个图像分块并对局部像素进行加权求和,捕捉区域内的特定特征,有助于平衡全局上下文特征和局部光照信息,提高光照估计的精度。在公开数据集上对比主流特征提取网络和4种经典光照估计框架,实验和分析结果表明,ViTLight在图像渲染准确率方面高于现有框架,其均方根误差(RMSE)和结构相异性(DSSIM)指标分别为0.1296和0.0426,验证了该框架的有效性与正确性。 展开更多
关键词 增强现实 光照估计 球面谐波系数 视觉Transformer 多头自注意力
在线阅读 下载PDF
基于改进的Vision Transformer深度哈希图像检索
9
作者 杨梦雅 赵琰 薛亮 《陕西科技大学学报》 北大核心 2025年第4期183-191,共9页
针对基于卷积神经网络的深度哈希方法不能很好捕捉全局图像信息和数据集中难易样本、正负样本对不平衡的问题,提出一种基于改进的Vision Transformer深度哈希算法(CMTH).首先,在Transformer编码网络前利用卷积神经网络提取深度局部特征... 针对基于卷积神经网络的深度哈希方法不能很好捕捉全局图像信息和数据集中难易样本、正负样本对不平衡的问题,提出一种基于改进的Vision Transformer深度哈希算法(CMTH).首先,在Transformer编码网络前利用卷积神经网络提取深度局部特征,降低维度并保持较高的图像分辨率.其次,改进的Vision Transformer网络使用轻量级多头互注意模块,提取高维深度全局特征的同时降低计算复杂度.最后,提出新的损失框架,设计标准焦点损失调整难样本在数据集中的权重,并构建一种新的哈希损失,以减少难易样本不平衡和正负样本对不平衡的影响.在CIFAR-10和NUS-WIDE上与基于Vision Transformer的深度哈希次优算法相比,在四种不同比特下均值平均精度分别平均提高了2.35%和3.75%. 展开更多
关键词 深度哈希 卷积神经网络 视觉注意力 图像检索
在线阅读 下载PDF
Dual-Path Vision Transformer用于急性缺血性脑卒中辅助诊断 被引量:3
10
作者 张桃红 郭学强 +4 位作者 郑瀚 罗继昌 王韬 焦力群 唐安莹 《电子科技大学学报》 EI CAS CSCD 北大核心 2024年第2期307-314,共8页
急性缺血性脑卒中是由于脑组织血液供应障碍导致的脑功能障碍,数字减影脑血管造影(DSA)是诊断脑血管疾病的金标准。基于患者的正面和侧面DSA图像,对急性缺血性脑卒中的治疗效果进行分级评估,构建基于Vision Transformer的双路径图像分... 急性缺血性脑卒中是由于脑组织血液供应障碍导致的脑功能障碍,数字减影脑血管造影(DSA)是诊断脑血管疾病的金标准。基于患者的正面和侧面DSA图像,对急性缺血性脑卒中的治疗效果进行分级评估,构建基于Vision Transformer的双路径图像分类智能模型DPVF。为了提高辅助诊断速度,基于EdgeViT的轻量化设计思想进行了模型的构建;为了使模型保持轻量化的同时具有较高的精度,提出空间-通道自注意力模块,促进Transformer模型捕获更全面的特征信息,提高模型的表达能力;此外,对于DPVF的两分支的特征融合,构建交叉注意力模块对两分支输出进行交叉融合,促使模型提取更丰富的特征,从而提高模型表现。实验结果显示DPVF在测试集上的准确率达98.5%,满足实际需求。 展开更多
关键词 急性缺血性脑卒中 视觉Transformer 双分支网络 特征融合
在线阅读 下载PDF
基于Vision Transformer的小麦病害图像识别算法 被引量:2
11
作者 白玉鹏 冯毅琨 +3 位作者 李国厚 赵明富 周浩宇 侯志松 《中国农机化学报》 北大核心 2024年第2期267-274,共8页
小麦白粉病、赤霉病和锈病是危害小麦产量的三大病害。为提高小麦病害图像的识别准确率,构建一种基于Vision Transformer的小麦病害图像识别算法。首先,通过田间拍摄的方式收集包含小麦白粉病、赤霉病和锈病3种病害在内的小麦病害图像,... 小麦白粉病、赤霉病和锈病是危害小麦产量的三大病害。为提高小麦病害图像的识别准确率,构建一种基于Vision Transformer的小麦病害图像识别算法。首先,通过田间拍摄的方式收集包含小麦白粉病、赤霉病和锈病3种病害在内的小麦病害图像,并对原始图像进行预处理,建立小麦病害图像识别数据集;然后,基于改进的Vision Transformer构建小麦病害图像识别算法,分析不同迁移学习方式和数据增强对模型识别效果的影响。试验可知,全参数迁移学习和数据增强能明显提高Vision Transformer模型的收敛速度和识别精度。最后,在相同时间条件下,对比Vision Transformer、AlexNet和VGG16算法在相同数据集上的表现。试验结果表明,Vision Transformer模型对3种小麦病害图像的平均识别准确率为96.81%,相较于AlexNet和VGG16模型识别准确率分别提高6.68%和4.94%。 展开更多
关键词 小麦病害 vision Transformer 迁移学习 图像识别 数据增强
在线阅读 下载PDF
细粒度图像分类上Vision Transformer的发展综述 被引量:7
12
作者 孙露露 刘建平 +3 位作者 王健 邢嘉璐 张越 王晨阳 《计算机工程与应用》 CSCD 北大核心 2024年第10期30-46,共17页
细粒度图像分类(fine-grained image classification,FGIC)一直是计算机视觉领域中的重要问题。与传统图像分类任务相比,FGIC的挑战在于类间对象极其相似,使任务难度进一步增加。随着深度学习的发展,Vision Transformer(ViT)模型在视觉... 细粒度图像分类(fine-grained image classification,FGIC)一直是计算机视觉领域中的重要问题。与传统图像分类任务相比,FGIC的挑战在于类间对象极其相似,使任务难度进一步增加。随着深度学习的发展,Vision Transformer(ViT)模型在视觉领域掀起热潮,并被引入到FGIC任务中。介绍了FGIC任务所面临的挑战,分析了ViT模型及其特性。主要根据模型结构全面综述了基于ViT的FGIC算法,包括特征提取、特征关系构建、特征注意和特征增强四方面内容,对每种算法进行了总结,并分析了它们的优缺点。通过对不同ViT模型在相同公用数据集上进行模型性能比较,以验证它们在FGIC任务上的有效性。最后指出了目前研究的不足,并提出未来研究方向,以进一步探索ViT在FGIC中的潜力。 展开更多
关键词 细粒度图像分类 vision Transformer 特征提取 特征关系构建 特征注意 特征增强
在线阅读 下载PDF
基于改进Vision Transformer的道岔故障智能诊断 被引量:3
13
作者 王英琪 李刚 +1 位作者 胡启正 杨勇 《铁道科学与工程学报》 EI CAS CSCD 北大核心 2024年第10期4321-4333,共13页
道岔故障种类繁多,特征复杂,存在检测难、分类难等问题,导致故障排查效率低下,对铁路运输安全构成威胁。Vision Transformer模型在图像分类方面具有较高准确度,但是其处理的是图像块,而不是传统的像素级特征,在某些情况下可能会影响曲... 道岔故障种类繁多,特征复杂,存在检测难、分类难等问题,导致故障排查效率低下,对铁路运输安全构成威胁。Vision Transformer模型在图像分类方面具有较高准确度,但是其处理的是图像块,而不是传统的像素级特征,在某些情况下可能会影响曲线局部信息的获取。针对上述情况,提出一种基于改进Vision Transformer模型的故障曲线分类算法。首先,对典型道岔故障及原因进行梳理分类,指出几种典型的道岔故障;其次,对使用道岔动作电流数据生成的图像尺寸进行调整并根据故障图像特点进行数据增强,使用ResNet网络取代原Vision Transformer模型中的故障图像分块机制进行特征提取,同时采用相对位置编码增强模型的适应性和泛化能力;最后,利用模型的多头自注意力机制,综合全局与局部信息进行分类,并得到分类权重。经过实验验证,本文道岔故障分类识别总体准确率达99.77%,各分类识别的平均精确率达99.78%,与原模型相比,在训练集和验证集上的识别精度分别提升了5.4%和2.4%。为了更好地理解模型的性能,采用Grad-CAM方法将迭代过程可视化,剖析了模型关注区域的变化过程,并在测试集上与VGG-16、DenseNet121等经典分类模型进行性能对比;通过ROC曲线评估分类效果,显示改进的模型取得更优结果。研究结果为道岔故障识别分类提供了新的理论支持,并为未来的研究提供了新的思路和方法。 展开更多
关键词 深度学习 图像分类 道岔故障识别 vision Transformer
在线阅读 下载PDF
基于Vision Transformer与迁移学习的裤装廓形识别与分类
14
作者 应欣 张宁 申思 《丝绸》 CAS CSCD 北大核心 2024年第11期77-83,共7页
针对裤装廓形识别与分类模型的分类不准确问题,文章采用带有自注意力机制的Vision Transformer模型实现裤装廓形图像的分类,对于图片背景等无关信息对廓形识别的干扰,添加自注意力机制,增强有用特征通道。为防止因裤型样本数据集较少产... 针对裤装廓形识别与分类模型的分类不准确问题,文章采用带有自注意力机制的Vision Transformer模型实现裤装廓形图像的分类,对于图片背景等无关信息对廓形识别的干扰,添加自注意力机制,增强有用特征通道。为防止因裤型样本数据集较少产生过拟合问题,可通过迁移学习方法对阔腿裤、喇叭裤、紧身裤、哈伦裤4种裤装廓形进行训练和验证,将改进的Vision Transformer模型与传统CNN模型进行对比实验,验证模型效果。实验结果表明:使用Vision Transformer模型在4种裤装廓形分类上的分类准确率达到97.72%,与ResNet-50和MobileNetV2模型相比均有提升,可为服装廓形的图像分类识别提供有力支撑,在实际服装领域中有较高的使用价值。 展开更多
关键词 裤装廓形 自注意力机制 vision transformer 迁移学习 图像分类 廓形识别
在线阅读 下载PDF
Collaborative positioning for swarms:A brief survey of vision,LiDAR and wireless sensors based methods 被引量:2
15
作者 Zeyu Li Changhui Jiang +3 位作者 Xiaobo Gu Ying Xu Feng zhou Jianhui Cui 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第3期475-493,共19页
As positioning sensors,edge computation power,and communication technologies continue to develop,a moving agent can now sense its surroundings and communicate with other agents.By receiving spatial information from bo... As positioning sensors,edge computation power,and communication technologies continue to develop,a moving agent can now sense its surroundings and communicate with other agents.By receiving spatial information from both its environment and other agents,an agent can use various methods and sensor types to localize itself.With its high flexibility and robustness,collaborative positioning has become a widely used method in both military and civilian applications.This paper introduces the basic fundamental concepts and applications of collaborative positioning,and reviews recent progress in the field based on camera,LiDAR(Light Detection and Ranging),wireless sensor,and their integration.The paper compares the current methods with respect to their sensor type,summarizes their main paradigms,and analyzes their evaluation experiments.Finally,the paper discusses the main challenges and open issues that require further research. 展开更多
关键词 Collaborative positioning vision LIDAR Wireless sensors Sensor fusion
在线阅读 下载PDF
9th International Conference on Control, Automation, Robotics and Vision ICARCV 2006
16
《控制理论与应用》 EI CAS CSCD 北大核心 2006年第1期157-157,共1页
关键词 vision Robotics and vision ICARcv 2006 Man AUTOMATION International Conference on Control
在线阅读 下载PDF
基于改进Vision Transformer网络的农作物病害识别方法 被引量:10
17
作者 王杨 李迎春 +6 位作者 许佳炜 王傲 马唱 宋世佳 谢帆 赵传信 胡明 《小型微型计算机系统》 CSCD 北大核心 2024年第4期887-893,共7页
基于DCNN模型的农作物病害识别方法在实验室环境下识别准确率高,但面对噪声时缺少鲁棒性.为了兼顾农作物病害识别的精度和鲁棒性,本文在标准ViT模型基础上加入增强分块序列化和掩码多头注意力,解决标准ViT模型缺乏局部归纳偏置和视觉特... 基于DCNN模型的农作物病害识别方法在实验室环境下识别准确率高,但面对噪声时缺少鲁棒性.为了兼顾农作物病害识别的精度和鲁棒性,本文在标准ViT模型基础上加入增强分块序列化和掩码多头注意力,解决标准ViT模型缺乏局部归纳偏置和视觉特征序列的自注意力过于关注自身的问题.实验结果表明,本文的EPEMMSA-ViT模型对比标准ViT模型可以更高效的从零学习;当添加预训练权重训练网络时,EPEMMSA-ViT模型在数据增强的PlantVillage番茄子集上能够得到99.63%的分类准确率;在添加椒盐噪声的测试数据集上,对比ResNet50、DenseNet121、MobileNet和ConvNeXt的分类准确率分别提升了6.08%、9.78%、29.78%和12.41%;在添加均值模糊的测试数据集上,对比ResNet50、DenseNet121、MobileNet和ConvNeXt的分类准确率分别提升了18.92%、31.11%、20.37%和19.58%. 展开更多
关键词 农作物病害识别 深度卷积神经网络 视觉Transformer 自注意力 局部归纳偏置
在线阅读 下载PDF
基于跨尺度Vision Transformer的深度哈希算法
18
作者 姚佩昀 于炯 +2 位作者 李雪 李梓杨 陈鹏程 《计算机应用研究》 CSCD 北大核心 2024年第11期3477-3483,共7页
为了解决当前深度哈希算法提取跨尺度特征能力不足以及难以拟合数据的全局相似度分布问题,提出了一种基于跨尺度Vision Transformer的深度哈希算法。首先,利用金字塔卷积和跨尺度注意力机制构建了一种多层次编码器,来捕获图像丰富的语... 为了解决当前深度哈希算法提取跨尺度特征能力不足以及难以拟合数据的全局相似度分布问题,提出了一种基于跨尺度Vision Transformer的深度哈希算法。首先,利用金字塔卷积和跨尺度注意力机制构建了一种多层次编码器,来捕获图像丰富的语义信息;其次,提出了一种基于代理的深度哈希算法,该算法为每个类别生成哈希代理,使得哈希码可以学习具有鉴别性的类别特征,从而缩小与同类别哈希代理的距离并拟合数据全局相似性分布;最后,在哈希代理与哈希码之间添加角度边距项,扩大类内相似性和类间差异性,以生成具有高判别性的哈希码。通过在CIFAR-10、ImageNet-100、NUS-Wide、MS COCO上进行的实验结果表明,该算法的平均检索精度比次优方法分别提升4.42%、19.61%、0.35%、15.03%,验证了该算法的有效性。 展开更多
关键词 深度哈希 视觉注意力 哈希代理 跨尺度 图像检索
在线阅读 下载PDF
基于AHP-CV法的赤水市生态敏感性评价
19
作者 赵晶 《农业技术与装备》 2024年第10期37-41,共5页
以贵州省赤水市为研究对象,选取6个评价因子采用层次分析法(AHP)与变异系数法(CV)进行组合赋权,构建赤水市生态敏感性评价模型。研究发现:在该区域中,水域缓冲区、植被覆盖度和土地利用类型是影响该区域的生态敏感性的主要因素;赤水市... 以贵州省赤水市为研究对象,选取6个评价因子采用层次分析法(AHP)与变异系数法(CV)进行组合赋权,构建赤水市生态敏感性评价模型。研究发现:在该区域中,水域缓冲区、植被覆盖度和土地利用类型是影响该区域的生态敏感性的主要因素;赤水市的生态敏感性处于中等偏上的水平,低度敏感区、轻度敏感区、中度敏感区、高度敏感区、极度敏感区的占比分别为6.79%,20.52%,31.26%,27.83%和13.61%,中度、高度、极度敏感区主要分布于赤水市南面,而低度敏感区、轻度敏感区主要分布在赤水市北面,各区敏感性均呈现出散布于赤水市全域的状态。 展开更多
关键词 生态敏感性 AHP cv 组合赋权 赤水市
在线阅读 下载PDF
基于行程动力学参数的PEMS与CVS的排放特性研究 被引量:1
20
作者 高明 徐桂金 姚大宇 《农业装备与车辆工程》 2024年第7期29-33,49,共6页
为了研究Ⅰ型试验中不同污染物排放特性,使用便携式排放测试系统(PEMS)与全流稀释系统(CVS),分析污染物排放因子与车辆的行程动力学参数、车速、加速度之间的相关性变化。结果表明,相对正加速度(RPA)与v·apos[95](速度与大于0.1 m/... 为了研究Ⅰ型试验中不同污染物排放特性,使用便携式排放测试系统(PEMS)与全流稀释系统(CVS),分析污染物排放因子与车辆的行程动力学参数、车速、加速度之间的相关性变化。结果表明,相对正加速度(RPA)与v·apos[95](速度与大于0.1 m/s^(2)正加速度的乘积的第95百分位)呈反比关系,CO、NOX、CO_(2)、PN排放因子均在低速段最高,CVS与PEMS采集数据趋势基本相同。汽车在加速阶段污染物排放显著增加,减速阶段污染物排放较少,对排放影响也较小,在v≤30 km/h,a≥0.8 m/s^(2)的情况下排放因子达到峰值。由于设备连接及进气方式的不同,使得CVS与PEMS的数值存在差异,但2套设备可同时用于试验以提高测试精度,因此本研究对Ⅰ型试验排放特性研究有着重大意义。 展开更多
关键词 便携式排放测试系统 全流稀释系统 行程动力学参数 排放因子 污染物排放
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部