期刊文献+
共找到531篇文章
< 1 2 27 >
每页显示 20 50 100
Novel imaging methods of stepped frequency radar based on compressed sensing 被引量:4
1
作者 Jihong Liu Shaokun Xu Xunzhang Gao Xiang Li 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2012年第1期47-56,共10页
The theory of compressed sensing (CS) provides a new chance to reduce the data acquisition time and improve the data usage factor of the stepped frequency radar system. In light of the sparsity of radar target refle... The theory of compressed sensing (CS) provides a new chance to reduce the data acquisition time and improve the data usage factor of the stepped frequency radar system. In light of the sparsity of radar target reflectivity, two imaging methods based on CS, termed the CS-based 2D joint imaging algorithm and the CS-based 2D decoupled imaging algorithm, are proposed. These methods incorporate the coherent mixing operation into the sparse dictionary, and take random measurements in both range and azimuth directions to get high resolution radar images, thus can remarkably reduce the data rate and simplify the hardware design of the radar system while maintaining imaging quality. Ex- periments from both simulated data and measured data in the anechoic chamber show that the proposed imaging methods can get more focused images than the traditional fast Fourier trans- form method. Wherein the joint algorithm has stronger robustness and can provide clearer inverse synthetic aperture radar images, while the decoupled algorithm is computationally more efficient but has slightly degraded imaging quality, which can be improved by increasing measurements or using a robuster recovery algorithm nevertheless. 展开更多
关键词 radar imaging compressed sensing (cs stepped frequency random sampling.
在线阅读 下载PDF
Airborne sparse flight array SAR 3D imaging based on compressed sensing in frequency domain 被引量:2
2
作者 TIAN He DONG Chunzhu +1 位作者 YIN Hongcheng YUAN Li 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2023年第1期56-67,共12页
In airborne array synthetic aperture radar(SAR), the three-dimensional(3D) imaging performance and cross-track resolution depends on the length of the equivalent array. In this paper, Barker sequence criterion is used... In airborne array synthetic aperture radar(SAR), the three-dimensional(3D) imaging performance and cross-track resolution depends on the length of the equivalent array. In this paper, Barker sequence criterion is used for sparse flight sampling of airborne array SAR, in order to obtain high cross-track resolution in as few times of flights as possible. Under each flight, the imaging algorithm of back projection(BP) and the data extraction method based on modified uniformly redundant arrays(MURAs) are utilized to obtain complex 3D image pairs. To solve the side-lobe noise in images, the interferometry between each image pair is implemented, and compressed sensing(CS) reconstruction is adopted in the frequency domain. Furthermore, to restore the geometrical relationship between each flight, the phase information corresponding to negative MURA is compensated on each single-pass image reconstructed by CS. Finally,by coherent accumulation of each complex image, the high resolution in cross-track direction is obtained. Simulations and experiments in X-band verify the availability. 展开更多
关键词 three-dimensional(3D)imaging synthetic aperture radar(SAR) sparse flight INTERFEROMETRY compressed sensing(cs)
在线阅读 下载PDF
Imaging algorithm of multi-ship motion target based on compressed sensing 被引量:2
3
作者 Lin Zhang Yicheng Jiang 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2016年第4期790-796,共7页
An imaging algorithm based on compressed sensing(CS) for the multi-ship motion target is presented. In order to reduce the quantity of data transmission in searching the ships on a large sea area, both range and azi... An imaging algorithm based on compressed sensing(CS) for the multi-ship motion target is presented. In order to reduce the quantity of data transmission in searching the ships on a large sea area, both range and azimuth of the moving ship targets are converted into sparse representation under certain signal basis. The signal reconstruction algorithm based on CS at a distant calculation station, and the Keystone and fractional Fourier transform(FRFT) algorithm are used to compensate range migration and obtain Doppler frequency. When the sea ships satisfy the sparsity, the algorithm can obtain higher resolution in both range and azimuth than the conventional imaging algorithm. Some simulations are performed to verify the reliability and stability. 展开更多
关键词 synthetic aperture radar(SAR) compressed sensing(cs multiple ships moving target sparse reconstruction
在线阅读 下载PDF
Reconstruction and transmission of astronomical image based on compressed sensing 被引量:1
4
作者 Xiaoping Shi Jie Zhang 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2016年第3期680-690,共11页
In the process of image transmission, the famous JPEG and JPEG-2000 compression methods need more transmission time as it is difficult for them to compress the image with a low compression rate. Recently the compresse... In the process of image transmission, the famous JPEG and JPEG-2000 compression methods need more transmission time as it is difficult for them to compress the image with a low compression rate. Recently the compressed sensing(CS) theory was proposed, which has earned great concern as it can compress an image with a low compression rate, meanwhile the original image can be perfectly reconstructed from only a few compressed data. The CS theory is used to transmit the high resolution astronomical image and build the simulation environment where there is communication between the satellite and the Earth. Number experimental results show that the CS theory can effectively reduce the image transmission and reconstruction time. Even with a very low compression rate, it still can recover a higher quality astronomical image than JPEG and JPEG-2000 compression methods. 展开更多
关键词 transmission time compression rate compressed sensing(cs high resolution astronomical image
在线阅读 下载PDF
Compensated methods for networked control system with packet drops based on compressed sensing
5
作者 FAN Ruifeng YIN Xunhe +1 位作者 LIU Zhenfei LAM Hak Keung 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2021年第6期1539-1556,共18页
Due to unreliable and bandwidth-limited characteristics of communication link in networked control systems,the realtime compensated methods for single-output systems and multioutput systems are proposed in this paper ... Due to unreliable and bandwidth-limited characteristics of communication link in networked control systems,the realtime compensated methods for single-output systems and multioutput systems are proposed in this paper based on the compressed sensing(CS)theory and sliding window technique,by which the estimates of dropping data packets in the feedback channel are obtained and the performance degradation induced by packet drops is reduced.Specifically,in order to reduce the cumulative error caused by the algorithm,the compensated estimates for single-output systems are corrected via the regularization term;considering the process of single-packet transmission,a new sequential CS framework of sensor data streams is introduced to effectively compensate the dropping packet on single-channel of multi-output systems;in presence of the medium access constraints on multi-channel,the communication sequence for scheduling is coupled to the algorithm and the estimates of the multiple sensors for multi-output systems are obtained via the regularization term.Simulation results illustrate that the proposed methods perform well and receive satisfactory performance. 展开更多
关键词 networked control systems packet drop compensated method compressed sensing(cs)
在线阅读 下载PDF
Joint 2D DOA and Doppler frequency estimation for L-shaped array using compressive sensing 被引量:5
6
作者 WANG Shixin ZHAO Yuan +3 位作者 LAILA Ibrahim XIONG Ying WANG Jun TANG Bin 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2020年第1期28-36,共9页
A joint two-dimensional(2D)direction-of-arrival(DOA)and radial Doppler frequency estimation method for the L-shaped array is proposed in this paper based on the compressive sensing(CS)framework.Revised from the conven... A joint two-dimensional(2D)direction-of-arrival(DOA)and radial Doppler frequency estimation method for the L-shaped array is proposed in this paper based on the compressive sensing(CS)framework.Revised from the conventional CS-based methods where the joint spatial-temporal parameters are characterized in one large scale matrix,three smaller scale matrices with independent azimuth,elevation and Doppler frequency are introduced adopting a separable observation model.Afterwards,the estimation is achieved by L1-norm minimization and the Bayesian CS algorithm.In addition,under the L-shaped array topology,the azimuth and elevation are separated yet coupled to the same radial Doppler frequency.Hence,the pair matching problem is solved with the aid of the radial Doppler frequency.Finally,numerical simulations corroborate the feasibility and validity of the proposed algorithm. 展开更多
关键词 electronic warfare L-shaped array joint parameter estimation L1-norm minimization Bayesian compressive sensing(cs) pair matching
在线阅读 下载PDF
Compressive sensing based multiuser detector for massive MBM MIMO uplink 被引量:3
7
作者 SONG Wei WANG Wenzheng 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2020年第1期19-27,共9页
Media based modulation(MBM)is expected to be a prominent modulation scheme,which has access to the high data rate by using radio frequency(RF)mirrors and fewer transmit antennas.Associated with multiuser multiple inpu... Media based modulation(MBM)is expected to be a prominent modulation scheme,which has access to the high data rate by using radio frequency(RF)mirrors and fewer transmit antennas.Associated with multiuser multiple input multiple output(MIMO),the MBM scheme achieves better performance than other conventional multiuser MIMO schemes.In this paper,the massive MIMO uplink is considered and a conjunctive MBM transmission scheme for each user is employed.This conjunctive MBM transmission scheme gathers aggregate MBM signals in multiple continuous time slots,which exploits the structured sparsity of these aggregate MBM signals.Under this kind of scenario,a multiuser detector with low complexity based on the compressive sensing(CS)theory to gain better detection performance is proposed.This detector is developed from the greedy sparse recovery technique compressive sampling matching pursuit(CoSaMP)and exploits not only the inherently distributed sparsity of MBM signals but also the structured sparsity of multiple aggregate MBM signals.By exploiting these sparsity,the proposed CoSaMP based multiuser detector achieves reliable detection with low complexity.Simulation results demonstrate that the proposed CoSaMP based multiuser detector achieves better detection performance compared with the conventional methods. 展开更多
关键词 media based modulation(MBM) radio frequency(RF)mirror compressive sensing(cs) multiple input multiple output(MIMO) multiuser detector compressive sampling matching pursuit(CoSaMP).
在线阅读 下载PDF
Robust signal recovery algorithm for structured perturbation compressive sensing 被引量:2
8
作者 Youhua Wang Jianqiu Zhang 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2016年第2期319-325,共7页
It is understood that the sparse signal recovery with a standard compressive sensing(CS) strategy requires the measurement matrix known as a priori. The measurement matrix is, however, often perturbed in a practical... It is understood that the sparse signal recovery with a standard compressive sensing(CS) strategy requires the measurement matrix known as a priori. The measurement matrix is, however, often perturbed in a practical application.In order to handle such a case, an optimization problem by exploiting the sparsity characteristics of both the perturbations and signals is formulated. An algorithm named as the sparse perturbation signal recovery algorithm(SPSRA) is then proposed to solve the formulated optimization problem. The analytical results show that our SPSRA can simultaneously recover the signal and perturbation vectors by an alternative iteration way, while the convergence of the SPSRA is also analytically given and guaranteed. Moreover, the support patterns of the sparse signal and structured perturbation shown are the same and can be exploited to improve the estimation accuracy and reduce the computation complexity of the algorithm. The numerical simulation results verify the effectiveness of analytical ones. 展开更多
关键词 sparse signal recovery compressive sensing(cs structured matrix perturbation
在线阅读 下载PDF
Degradation algorithm of compressive sensing
9
作者 Chunhui Zhao Wei Liu 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2011年第5期832-839,共8页
The compressive sensing (CS) theory allows people to obtain signal in the frequency much lower than the requested one of sampling theorem. Because the theory is based on the assumption of that the location of sparse... The compressive sensing (CS) theory allows people to obtain signal in the frequency much lower than the requested one of sampling theorem. Because the theory is based on the assumption of that the location of sparse values is unknown, it has many constraints in practical applications. In fact, in many cases such as image processing, the location of sparse values is knowable, and CS can degrade to a linear process. In order to take full advantage of the visual information of images, this paper proposes the concept of dimensionality reduction transform matrix and then se- lects sparse values by constructing an accuracy control matrix, so on this basis, a degradation algorithm is designed that the signal can be obtained by the measurements as many as sparse values and reconstructed through a linear process. In comparison with similar methods, the degradation algorithm is effective in reducing the number of sensors and improving operational efficiency. The algorithm is also used to achieve the CS process with the same amount of data as joint photographic exports group (JPEG) compression and acquires the same display effect. 展开更多
关键词 compressive sensing (cs dimensionality reduction transform matrix accuracy control matrix degradation algorithm joint photographic exports group (JPEG) compression.
在线阅读 下载PDF
Adaptive block greedy algorithms for receiving multi-narrowband signal in compressive sensing radar reconnaissance receiver
10
作者 ZHANG Chaozhu XU Hongyi JIANG Haiqing 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2018年第6期1158-1169,共12页
This paper extends the application of compressive sensing(CS) to the radar reconnaissance receiver for receiving the multi-narrowband signal. By combining the concept of the block sparsity, the self-adaption methods, ... This paper extends the application of compressive sensing(CS) to the radar reconnaissance receiver for receiving the multi-narrowband signal. By combining the concept of the block sparsity, the self-adaption methods, the binary tree search,and the residual monitoring mechanism, two adaptive block greedy algorithms are proposed to achieve a high probability adaptive reconstruction. The use of the block sparsity can greatly improve the efficiency of the support selection and reduce the lower boundary of the sub-sampling rate. Furthermore, the addition of binary tree search and monitoring mechanism with two different supports self-adaption methods overcome the instability caused by the fixed block length while optimizing the recovery of the unknown signal.The simulations and analysis of the adaptive reconstruction ability and theoretical computational complexity are given. Also, we verify the feasibility and effectiveness of the two algorithms by the experiments of receiving multi-narrowband signals on an analogto-information converter(AIC). Finally, an optimum reconstruction characteristic of two algorithms is found to facilitate efficient reception in practical applications. 展开更多
关键词 compressive sensing(cs) adaptive greedy algorithm block sparsity analog-to-information convertor(AIC) multinarrowband signal
在线阅读 下载PDF
基于MCS-SBL算法的配电网故障定位方法 被引量:2
11
作者 周群 刘梓琳 +2 位作者 冷敏瑞 印月 何川 《电力系统及其自动化学报》 CSCD 北大核心 2024年第3期30-38,共9页
配电网拓扑结构复杂,传统方法往往需要大量测点信息且难以实现快速有效的故障定位,本文提出基于少量测点信息的故障定位方法。首先,利用等效原理建立一个欠定的故障节点电压方程;其次,利用多重测量向量模型的贝叶斯压缩感知算法求解方程... 配电网拓扑结构复杂,传统方法往往需要大量测点信息且难以实现快速有效的故障定位,本文提出基于少量测点信息的故障定位方法。首先,利用等效原理建立一个欠定的故障节点电压方程;其次,利用多重测量向量模型的贝叶斯压缩感知算法求解方程,根据重构稀疏电流矩阵的非零元素位置求解故障区域,实现故障定位;最后,在IEEE33节点配电系统上进行仿真实验,结果表明,所提方法仅需要少量测点的故障前后正序电压分量便可有效定位故障,计算速度较快,并且基本不受故障类型、过渡电阻的影响,同时适用于单故障和多重故障的场景,具有较强的抗噪能力。 展开更多
关键词 配电网 故障定位 多重测量向量模型 稀疏电流 压缩感知
在线阅读 下载PDF
Construction of deterministic sensing matrix and its application to DOA estimation 被引量:1
12
作者 Yi Shen Yan Jing Naizhang Feng 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2016年第1期10-19,共10页
Compressive sensing(CS) has emerged as a novel sampling framework which enables sparse signal acquisition and reconstruction with fewer measurements below the Nyquist rate.An important issue for CS is the constructi... Compressive sensing(CS) has emerged as a novel sampling framework which enables sparse signal acquisition and reconstruction with fewer measurements below the Nyquist rate.An important issue for CS is the construction of measurement matrix or sensing matrix.A new deterministic sensing matrix,named as OOC-B,is proposed by exploiting optical orthogonal codes(OOCs),Bernoulli matrix and Singer structure,which has the entries of 0,+1 and-1 before normalization.We have proven that the designed deterministic matrix is asymptotically optimal.In addition,the proposed deterministic sensing matrix is applied to direction of arrival(DOA) estimation of narrowband signals by CS arrays(CSA)processing and CS recovery.Theoretical analysis and simulation results show that the proposed sensing matrix has good performance for DOA estimation.It is very effective for simplifying hardware structure and decreasing computational complexity in DOA estimation by CSA processing.Besides,lower root mean square error(RMSE) and bias are obtained in DOA estimation by CS recovery. 展开更多
关键词 deterministic sensing matrix optical orthogonal code(OOC) Bernoulli matrix compressive sensing(cs direction of arrival(DOA).
在线阅读 下载PDF
一种压缩感知测量矩阵的联合优化算法
13
作者 杨柳 白朝元 范平志 《西南交通大学学报》 北大核心 2025年第2期454-461,共8页
对于压缩感知算法,其测量矩阵与稀疏基之间的相关性往往决定了信号恢复精度.为提升大规模通信场景下压缩感知算法重构信号的性能,基于矩阵分解与等角紧框架理论对测量矩阵进行改进.首先,基于测量矩阵和稀疏基构造字典矩阵,并进一步构造G... 对于压缩感知算法,其测量矩阵与稀疏基之间的相关性往往决定了信号恢复精度.为提升大规模通信场景下压缩感知算法重构信号的性能,基于矩阵分解与等角紧框架理论对测量矩阵进行改进.首先,基于测量矩阵和稀疏基构造字典矩阵,并进一步构造Gram矩阵,利用特征值分解降低Gram矩阵的平均相关性;然后,基于等角紧框架理论与梯度缩减理论,通过使Gram矩阵逼近等角紧框架矩阵来减小Gram矩阵非主对角线元素的最大值,从而降低测量矩阵与稀疏基之间的最大相关性;最后,以正交匹配追踪(orthogonal matching pursuit,OMP)为重构算法进行仿真验证.仿真结果表明:相比于优化前,矩阵相关系数降低40%~50%;在信道估计与活跃用户检测中,本文在较高稀疏度下的算法错误估计数比其他优化算法降低50%以上,信道估计的均方误差相比其他矩阵提升3 dB,误码率性能提升2 dB. 展开更多
关键词 压缩感知 矩阵分解 等角紧框架理论 信道估计 活跃用户检测
在线阅读 下载PDF
基于CS-MUSIC算法的DOA估计 被引量:16
14
作者 吴小川 邓维波 杨强 《系统工程与电子技术》 EI CSCD 北大核心 2013年第9期1821-1824,共4页
多重信号分类(multiple signal classification,MUSIC)方法在少快拍数或者存在相干信源的情况下不能准确估计信号的波达方向,而压缩感知(compressive sensing,CS)方法在多快拍数或低信噪比情况下分辨性能不稳定,估计准确率受限。提出了... 多重信号分类(multiple signal classification,MUSIC)方法在少快拍数或者存在相干信源的情况下不能准确估计信号的波达方向,而压缩感知(compressive sensing,CS)方法在多快拍数或低信噪比情况下分辨性能不稳定,估计准确率受限。提出了一种基于CS的MUSIC方法,简称CS-MUSIC,该方法针对不同的快拍数,建立二者之间的联系,构造出新的正交空间,获得尖锐的谱峰。理论分析和仿真结果表明,所提方法在不同快拍数条件下,具有较高的估计精度,克服了传统方法存在的缺陷,并且对噪声具有鲁棒性。 展开更多
关键词 压缩感知 波达方向估计 基于压缩感知的多重信号分类 同时正交匹配追踪
在线阅读 下载PDF
基于压缩感知的非侵入式负荷监测
15
作者 袁博 葛少云 +3 位作者 刘洪 冯喜春 刘国平 魏孟举 《中国电机工程学报》 北大核心 2025年第3期1205-1218,I0034,共15页
压缩感知(compressed sensing,CS)具有压缩简单、更适用于监测环境等特点,成为电网中解决监测数据海量化问题的重要方式,但其在非侵入式负荷监测(non-intrusive load monitoring,NILM)中的应用研究尚未真正开展。为适应传统NILM中时空... 压缩感知(compressed sensing,CS)具有压缩简单、更适用于监测环境等特点,成为电网中解决监测数据海量化问题的重要方式,但其在非侵入式负荷监测(non-intrusive load monitoring,NILM)中的应用研究尚未真正开展。为适应传统NILM中时空密集采集、高频信息采集等需求,该文首次深入探索基于压缩感知的非侵入式负荷监测方法。首先,分析负荷原始信号及其特征值的类型,证明NILM中的CS可用性;然后,分别基于场景识别、数学优化模型和事件探测,提出3种基于CS的NILM框架及其实现流程;在此基础上,针对框架中需要解决的关键问题,提出适用的特征提取方法、事件探测方法、数学优化模型、CS三要素设计的具体流程。实验表明,该文提出的3种框架及其关键问题解决方法均具有合理性,负荷识别准确率均接近90%、负荷分解准确率达92%以上、重构信噪比大于70 dB,满足相关领域要求。 展开更多
关键词 压缩感知 基本框架 事件探测 特征提取 数学模型 可用性证明 cs三要素
在线阅读 下载PDF
基于NCS算子的大斜视SAR压缩感知成像方法 被引量:6
16
作者 顾福飞 张群 +2 位作者 杨秋 霍文俊 王敏 《雷达学报(中英文)》 CSCD 2016年第1期16-24,共9页
该文针对大斜视合成孔径雷达(Synthetic Aperture Radar,SAR)成像进行研究,提出了一种基于非线性频调变标(Non-linear Chirp Scaling,NCS)算子的大斜视SAR压缩感知成像方法。首先在详细分析大斜视SAR回波信号模型的基础上,给出了一种基... 该文针对大斜视合成孔径雷达(Synthetic Aperture Radar,SAR)成像进行研究,提出了一种基于非线性频调变标(Non-linear Chirp Scaling,NCS)算子的大斜视SAR压缩感知成像方法。首先在详细分析大斜视SAR回波信号模型的基础上,给出了一种基于全采样数据的NCS成像算法,该算法有效完成了回波数据的走动补偿与解耦合处理,实现了准确成像。其次针对降采样的大斜视SAR回波数据成像问题,提出将上述成像算法构造成NCS算子并基于该算子建立压缩感知重构模型,通过对模型的优化求解直接获得最终的成像结果。该方法对于稀疏性成像场景能够有效降低回波数据采样率实现高质量成像,对于非稀疏成像场景在满采样条件下能够提高成像质量。最后的点目标和面目标的仿真实验验证了该文所提方法的有效性和可行性。 展开更多
关键词 合成孔径雷达 大斜视成像 压缩感知 Ncs算子 迭代阈值算法
在线阅读 下载PDF
基于坐标变换的风电变流器电压信号CS压缩方法 被引量:2
17
作者 董唯光 张晓东 +1 位作者 郭俊锋 汤旻安 《电子测量与仪器学报》 CSCD 北大核心 2016年第12期1818-1827,共10页
为了解决直接利用压缩感知(CS)理论对风电变流器输出端三相电压监测数据存储空间的资源浪费以及重构性能差等问题,提出了一种基于坐标变换的风电变流器电压信号CS压缩方法。该方法的关键是利用dq0变换、空间矢量变换将三相电压信号转换... 为了解决直接利用压缩感知(CS)理论对风电变流器输出端三相电压监测数据存储空间的资源浪费以及重构性能差等问题,提出了一种基于坐标变换的风电变流器电压信号CS压缩方法。该方法的关键是利用dq0变换、空间矢量变换将三相电压信号转换为一维信号;然后将传统的多频带融合思想用于CS稀疏表示中,构造稀疏字典矩阵,并分析了稀疏字典与测量矩阵的不相关性;最后利用高斯随机矩阵进行压缩测量,使用追踪算法实现一维信号的恢复,将其转化为两相信号并作坐标反变换,即得到重构的三相电压信号。仿真结果表明,与直接对监测的三相电压数据进行CS处理相比,该方法可有效的压缩原始三相电压数据,使得运行时间降低,重构误差减小,并且节约了测量数据的存储空间,因而更加具有实际应用价值。 展开更多
关键词 坐标变换 压缩感知 三相电压信号 稀疏字典矩阵 压缩存储
在线阅读 下载PDF
基于CS和神经网络的传感器网络模式识别研究 被引量:3
18
作者 龚静 陈向东 时子青 《传感器与微系统》 CSCD 北大核心 2011年第12期62-64,共3页
当前,传感器网络快速地发展,其节点不断增多,需要传输和储存的数据量也就不断增大,同时现有传感器节点尺寸与复杂度限制了传感器网络的数据存储、数据的计算速度及频宽。针对此类问题,将压缩感知技术应用于传感器网络,对传感器网络中传... 当前,传感器网络快速地发展,其节点不断增多,需要传输和储存的数据量也就不断增大,同时现有传感器节点尺寸与复杂度限制了传感器网络的数据存储、数据的计算速度及频宽。针对此类问题,将压缩感知技术应用于传感器网络,对传感器网络中传输的数据进行压缩,降低传输数据量,然后在接收端重构数据,将该数据样本作为BP网络的输入进行识别。实验证明:该方法可以提高网络数据存储能力和带宽利用率。 展开更多
关键词 压缩感知 传感器网络 BP神经网络
在线阅读 下载PDF
基于混沌随机滤波器的CS-MIMO雷达测量矩阵优化设计 被引量:2
19
作者 彭珍妮 贲德 张弓 《系统工程与电子技术》 EI CSCD 北大核心 2015年第3期532-536,共5页
提出了一种在压缩感知多输入多输出(compressive sensing-multiple input multiple output,CS-MIMO)雷达中利用混沌非线性系统设计随机滤波器进而实现测量矩阵优化的方法。目前,大部分研究采用高斯随机矩阵作为测量矩阵,这类测量矩阵的... 提出了一种在压缩感知多输入多输出(compressive sensing-multiple input multiple output,CS-MIMO)雷达中利用混沌非线性系统设计随机滤波器进而实现测量矩阵优化的方法。目前,大部分研究采用高斯随机矩阵作为测量矩阵,这类测量矩阵的局限性是,每次仿真实验产生的矩阵互不相同,雷达系统无法实现在线优化,且其对硬件要求高,实现困难。在CS-MIMO雷达信号模型基础上构造稀疏基,提出了基于随机滤波器结构的测量矩阵设计方法,利用混沌序列构造随机滤波器系数,完成对雷达回波的压缩观测。同时以Gram矩阵逼近对角矩阵为准则对随机滤波等效测量矩阵进行优化,进一步提高雷达系统性能。仿真结果表明所提出的基于混沌随机滤波器的CS-MIMO雷达测量矩阵设计与优化算法能够有效提高波达角(direction of arrival,DOA)估计精度。 展开更多
关键词 压缩感知 多输入多输出雷达 测量矩阵 混沌 随机滤波器
在线阅读 下载PDF
CS-MRI中稀疏信号支撑集混合检测方法 被引量:2
20
作者 冯振 郭禾 +2 位作者 王宇新 贾棋 侯广峰 《计算机工程》 CAS CSCD 2014年第5期164-167,共4页
针对磁共振成像技术采样过程过慢的问题,给出一种新的基于压缩感知的图像重建方法。通过分析一种特殊的基于奇异值分解(SVD)的信号稀疏表示方法,提出一种结合稀疏信号位置和大小信息的支撑集混合检测方法,并根据该方法改进稀疏信号重建... 针对磁共振成像技术采样过程过慢的问题,给出一种新的基于压缩感知的图像重建方法。通过分析一种特殊的基于奇异值分解(SVD)的信号稀疏表示方法,提出一种结合稀疏信号位置和大小信息的支撑集混合检测方法,并根据该方法改进稀疏信号重建算法FCSA。实验结果证明,在相同的欠采样率下,改进FCSA算法重建图像的峰值信噪比(PSNR)比传统的基于小波稀疏基的FCSA算法重建图像的PSNR高2.21 dB^12.72 dB,比基于SVD稀疏基的FCSA算法重建图像的PSNR高0.87 dB^2.05 dB,且重建时间从基于小波稀疏基的FCSA算法的103.21 s下降至改进FCSA算法的36.91 s。 展开更多
关键词 压缩感知 磁共振成像 支撑集检测 奇异值分解 稀疏信号 FcsA算法
在线阅读 下载PDF
上一页 1 2 27 下一页 到第
使用帮助 返回顶部