This paper explores the recovery of block sparse signals in frame-based settings using the l_(2)/l_(q)-synthesis technique(0<q≤1).We propose a new null space property,referred to as block D-NSP_(q),which is based ...This paper explores the recovery of block sparse signals in frame-based settings using the l_(2)/l_(q)-synthesis technique(0<q≤1).We propose a new null space property,referred to as block D-NSP_(q),which is based on the dictionary D.We establish that matrices adhering to the block D-NSP_(q)condition are both necessary and sufficient for the exact recovery of block sparse signals via l_(2)/l_(q)-synthesis.Additionally,this condition is essential for the stable recovery of signals that are block-compressible with respect to D.This D-NSP_(q)property is identified as the first complete condition for successful signal recovery using l_(2)/l_(q)-synthesis.Furthermore,we assess the theoretical efficacy of the l2/lq-synthesis method under conditions of measurement noise.展开更多
High resolution range imaging with correlation processing suffers from high sidelobe pedestal in random frequency-hopping wideband radar. After the factors which affect the sidelobe pedestal being analyzed, a compress...High resolution range imaging with correlation processing suffers from high sidelobe pedestal in random frequency-hopping wideband radar. After the factors which affect the sidelobe pedestal being analyzed, a compressed sensing based algorithm for high resolution range imaging and a new minimized ll-norm criterion for motion compensation are proposed. The random hopping of the transmitted carrier frequency is converted to restricted isometry property of the observing matrix. Then practical problems of imaging model solution and signal parameter design are resolved. Due to the particularity of the proposed algorithm, two new indicators of range profile, i.e., average signal to sidelobe ratio and local similarity, are defined. The chamber measured data are adopted to testify the validity of the proposed algorithm, and simulations are performed to analyze the precision of velocity measurement as well as the performance of motion compensation. The simulation results show that the proposed algorithm has such advantages as high precision velocity measurement, low sidelobe and short period imaging, which ensure robust imaging for moving targets when signal-to-noise ratio is above 10 dB.展开更多
The theory of compressed sensing (CS) provides a new chance to reduce the data acquisition time and improve the data usage factor of the stepped frequency radar system. In light of the sparsity of radar target refle...The theory of compressed sensing (CS) provides a new chance to reduce the data acquisition time and improve the data usage factor of the stepped frequency radar system. In light of the sparsity of radar target reflectivity, two imaging methods based on CS, termed the CS-based 2D joint imaging algorithm and the CS-based 2D decoupled imaging algorithm, are proposed. These methods incorporate the coherent mixing operation into the sparse dictionary, and take random measurements in both range and azimuth directions to get high resolution radar images, thus can remarkably reduce the data rate and simplify the hardware design of the radar system while maintaining imaging quality. Ex- periments from both simulated data and measured data in the anechoic chamber show that the proposed imaging methods can get more focused images than the traditional fast Fourier trans- form method. Wherein the joint algorithm has stronger robustness and can provide clearer inverse synthetic aperture radar images, while the decoupled algorithm is computationally more efficient but has slightly degraded imaging quality, which can be improved by increasing measurements or using a robuster recovery algorithm nevertheless.展开更多
In airborne array synthetic aperture radar(SAR), the three-dimensional(3D) imaging performance and cross-track resolution depends on the length of the equivalent array. In this paper, Barker sequence criterion is used...In airborne array synthetic aperture radar(SAR), the three-dimensional(3D) imaging performance and cross-track resolution depends on the length of the equivalent array. In this paper, Barker sequence criterion is used for sparse flight sampling of airborne array SAR, in order to obtain high cross-track resolution in as few times of flights as possible. Under each flight, the imaging algorithm of back projection(BP) and the data extraction method based on modified uniformly redundant arrays(MURAs) are utilized to obtain complex 3D image pairs. To solve the side-lobe noise in images, the interferometry between each image pair is implemented, and compressed sensing(CS) reconstruction is adopted in the frequency domain. Furthermore, to restore the geometrical relationship between each flight, the phase information corresponding to negative MURA is compensated on each single-pass image reconstructed by CS. Finally,by coherent accumulation of each complex image, the high resolution in cross-track direction is obtained. Simulations and experiments in X-band verify the availability.展开更多
A compressed sensing(CS) based channel estimation algorithm is proposed by using the delay-Doppler sparsity of the fast fading channel.A compressive basis expansion channel model with sparsity in both time and frequ...A compressed sensing(CS) based channel estimation algorithm is proposed by using the delay-Doppler sparsity of the fast fading channel.A compressive basis expansion channel model with sparsity in both time and frequency domains is given.The pilots in accordance with a novel random pilot matrix in both time and frequency domains are sent to measure the delay-Doppler sparsity channel.The relatively nonzero channel coefficients are tracked by random pilots at a sampling rate significantly below the Nyquist rate.The sparsity channels are estimated from a very limited number of channel measurements by the basis pursuit algorithm.The proposed algorithm can effectively improve the channel estimation performance when the number of pilot symbols is reduced with improvement of throughput efficiency.展开更多
Signal reconstruction is a significantly important theoretical issue for compressed sensing.Considering the situation of signal reconstruction with unknown sparsity,the conventional signal reconstruction algorithms us...Signal reconstruction is a significantly important theoretical issue for compressed sensing.Considering the situation of signal reconstruction with unknown sparsity,the conventional signal reconstruction algorithms usually perform low accuracy.In this work,a sparsity adaptive signal reconstruction algorithm using sensing dictionary is proposed to achieve a lower reconstruction error.The sparsity estimation method is combined with the construction of the support set based on sensing dictionary.Using the adaptive sparsity method,an iterative signal reconstruction algorithm is proposed.The sufficient conditions for the exact signal reconstruction of the algorithm also is proved by theory.According to a series of simulations,the results show that the proposed method has higher precision compared with other state-of-the-art signal reconstruction algorithms especially in a high compression ratio scenarios.展开更多
The use of underwater acoustic data has rapidly expanded with the application of multichannel, large-aperture underwater detection arrays. This study presents an underwater acoustic data compression method that is bas...The use of underwater acoustic data has rapidly expanded with the application of multichannel, large-aperture underwater detection arrays. This study presents an underwater acoustic data compression method that is based on compressed sensing. Underwater acoustic signals are transformed into the sparse domain for data storage at a receiving terminal, and the improved orthogonal matching pursuit(IOMP) algorithm is used to reconstruct the original underwater acoustic signals at a data processing terminal. When an increase in sidelobe level occasionally causes a direction of arrival estimation error, the proposed compression method can achieve a 10 times stronger compression for narrowband signals and a 5 times stronger compression for wideband signals than the orthogonal matching pursuit(OMP) algorithm. The IOMP algorithm also reduces the computing time by about 20% more than the original OMP algorithm. The simulation and experimental results are discussed.展开更多
To acquire global navigation satellite system(GNSS)signals means four-dimension acquisition of bit transition,Doppler frequency,Doppler rate,and code phase in high-dynamic and weak signal environments,which needs a hi...To acquire global navigation satellite system(GNSS)signals means four-dimension acquisition of bit transition,Doppler frequency,Doppler rate,and code phase in high-dynamic and weak signal environments,which needs a high computational cost.To reduce the computations,this paper proposes a twostep compressed acquisition method(TCAM)for the post-correlation signal parameters estimation.Compared with the fast Fourier transform(FFT)based methods,TCAM uses fewer frequency search points.In this way,the proposed method reduces complex multiplications,and uses real multiplications instead of improving the accuracy of the Doppler frequency and the Doppler rate.Furthermore,the differential process between two adjacent milliseconds is used for avoiding the impact of bit transition and the Doppler frequency on the integration peak.The results demonstrate that due to the reduction of complex multiplications,the computational cost of TCAM is lower than that of the FFT based method under the same signal to noise ratio(SNR).展开更多
An imaging algorithm based on compressed sensing(CS) for the multi-ship motion target is presented. In order to reduce the quantity of data transmission in searching the ships on a large sea area, both range and azi...An imaging algorithm based on compressed sensing(CS) for the multi-ship motion target is presented. In order to reduce the quantity of data transmission in searching the ships on a large sea area, both range and azimuth of the moving ship targets are converted into sparse representation under certain signal basis. The signal reconstruction algorithm based on CS at a distant calculation station, and the Keystone and fractional Fourier transform(FRFT) algorithm are used to compensate range migration and obtain Doppler frequency. When the sea ships satisfy the sparsity, the algorithm can obtain higher resolution in both range and azimuth than the conventional imaging algorithm. Some simulations are performed to verify the reliability and stability.展开更多
In the process of image transmission, the famous JPEG and JPEG-2000 compression methods need more transmission time as it is difficult for them to compress the image with a low compression rate. Recently the compresse...In the process of image transmission, the famous JPEG and JPEG-2000 compression methods need more transmission time as it is difficult for them to compress the image with a low compression rate. Recently the compressed sensing(CS) theory was proposed, which has earned great concern as it can compress an image with a low compression rate, meanwhile the original image can be perfectly reconstructed from only a few compressed data. The CS theory is used to transmit the high resolution astronomical image and build the simulation environment where there is communication between the satellite and the Earth. Number experimental results show that the CS theory can effectively reduce the image transmission and reconstruction time. Even with a very low compression rate, it still can recover a higher quality astronomical image than JPEG and JPEG-2000 compression methods.展开更多
A new iterative greedy algorithm based on the backtracking technique was proposed for distributed compressed sensing(DCS) problem. The algorithm applies two mechanisms for precise recovery soft thresholding and cuttin...A new iterative greedy algorithm based on the backtracking technique was proposed for distributed compressed sensing(DCS) problem. The algorithm applies two mechanisms for precise recovery soft thresholding and cutting. It can reconstruct several compressed signals simultaneously even without any prior information of the sparsity, which makes it a potential candidate for many practical applications, but the numbers of non-zero(significant) coefficients of signals are not available. Numerical experiments are conducted to demonstrate the validity and high performance of the proposed algorithm, as compared to other existing strong DCS algorithms.展开更多
Due to unreliable and bandwidth-limited characteristics of communication link in networked control systems,the realtime compensated methods for single-output systems and multioutput systems are proposed in this paper ...Due to unreliable and bandwidth-limited characteristics of communication link in networked control systems,the realtime compensated methods for single-output systems and multioutput systems are proposed in this paper based on the compressed sensing(CS)theory and sliding window technique,by which the estimates of dropping data packets in the feedback channel are obtained and the performance degradation induced by packet drops is reduced.Specifically,in order to reduce the cumulative error caused by the algorithm,the compensated estimates for single-output systems are corrected via the regularization term;considering the process of single-packet transmission,a new sequential CS framework of sensor data streams is introduced to effectively compensate the dropping packet on single-channel of multi-output systems;in presence of the medium access constraints on multi-channel,the communication sequence for scheduling is coupled to the algorithm and the estimates of the multiple sensors for multi-output systems are obtained via the regularization term.Simulation results illustrate that the proposed methods perform well and receive satisfactory performance.展开更多
G-protein coupled receptors(GPCRs) have a relatively conservative seven transmembrane helix(7tm) regions, and their N and C termini are various. In order to strengthen the features of GPCR families, N and C termin...G-protein coupled receptors(GPCRs) have a relatively conservative seven transmembrane helix(7tm) regions, and their N and C termini are various. In order to strengthen the features of GPCR families, N and C termini were removed in this study, then frequency features in the form of single amino acid and dipeptide compositions for recognition of human GPCRs were analyzed and extracted based on the compressed amino acid alphabets. Based on these features, classifiers were developed using support vector machine(SVM). The ability of different compressed methods was investigated. The testing results demonstrated that the suitable choice of compressed method combined with amino acid composition information could get good performance for the recognition of human GPCRs.展开更多
In order to describe the three-stage creep behavior of compressed asphalt mastic, a visco-elastoplastic damage constitutive model is proposed in this work. The model parameters are treated as quadratic polynomial func...In order to describe the three-stage creep behavior of compressed asphalt mastic, a visco-elastoplastic damage constitutive model is proposed in this work. The model parameters are treated as quadratic polynomial functions with respect to stress and temperature. A series of uniaxial compressive creep experiments are performed at various stress and temperature conditions in order to determine these parameter functions, and then the proposed model is validated by comparison between the predictions and experiments at the other loading conditions. It is shown that very small permanent deformation at low stress and temperature increases rapidly with elevated stress or temperature and the damage may initiate in the stationary stage but mainly develops in the accelerated stage. Compared with the visco-elastoplastic models without damage, the predictions from the proposed model is in better agreement with the experiments, and can better capture the rate-dependency in creep responses of asphalt mastic especially below its softening point of 47 ℃展开更多
Nonperiodic interrupted sampling repeater jamming(ISRJ)against inverse synthetic aperture radar(ISAR)can obtain two-dimensional blanket jamming performance by joint fast and slow time domain interrupted modulation,whi...Nonperiodic interrupted sampling repeater jamming(ISRJ)against inverse synthetic aperture radar(ISAR)can obtain two-dimensional blanket jamming performance by joint fast and slow time domain interrupted modulation,which is obviously dif-ferent from the conventional multi-false-target deception jam-ming.In this paper,a suppression method against this kind of novel jamming is proposed based on inter-pulse energy function and compressed sensing theory.By utilizing the discontinuous property of the jamming in slow time domain,the unjammed pulse is separated using the intra-pulse energy function diffe-rence.Based on this,the two-dimensional orthogonal matching pursuit(2D-OMP)algorithm is proposed.Further,it is proposed to reconstruct the ISAR image with the obtained unjammed pulse sequence.The validity of the proposed method is demon-strated via the Yake-42 plane data simulations.展开更多
The undrained mechanical behavior of unsaturated completely weathered granite(CWG)is highly susceptible to alterations in the hydraulic environment,particularly under uniaxial loading conditions,due to the unique natu...The undrained mechanical behavior of unsaturated completely weathered granite(CWG)is highly susceptible to alterations in the hydraulic environment,particularly under uniaxial loading conditions,due to the unique nature of this soil type.In this study,a series of unconfined compression tests were carried out on unsaturated CWG soil in an underground engineering site,and the effects of varying the environmental variables on the main undrained mechanical properties were analyzed.Based on the experimental results,a novel constitutive model was then established using the damage mechanics theory and the undetermined coefficient method.The results demonstrate that the curves of remolded CWG specimens with different moisture contents and dry densities exhibited diverse characteristics,including brittleness,significant softening,and ductility.As a typical indicator,the unconfined compression strength of soil specimens initially increased with an increase in moisture content and then decreased.Meanwhile,an optimal moisture content of approximately 10.5%could be observed,while a critical moisture content value of 13.0%was identified,beyond which the strength of the specimen decreases sharply.Moreover,the deformation and fracture of CWG specimens were predominantly caused by shear failure,and the ultimate failure modes were primarily influenced by moisture content rather than dry density.Furthermore,by comparing several similar models and the experimental data,the proposed model could accurately replicate the undrained mechanical characteristics of unsaturated CWG soil,and quantitatively describe the key mechanical indexes.These findings offer a valuable reference point for understanding the underlying mechanisms,anticipating potential risks,and implementing effective control measures in similar underground engineering projects.展开更多
Microwave-curing and mechanical grinding of fly ash have both beenadopted as effective methods for improving the early-age strength of alkali-activated fly ash(AAFA)binders.This study combined these two approaches by ...Microwave-curing and mechanical grinding of fly ash have both beenadopted as effective methods for improving the early-age strength of alkali-activated fly ash(AAFA)binders.This study combined these two approaches by synthesizing AAFA using original,medium-fine,and ultrafine fly ash as precursors,and then specimens were cured with a five-stage temperature-controlled microwave.The compressive strength results indicate that the original AAFA develops the highest strength initially during microwave-curing,reaching 28 MPa at stage 2.Medium-fine AAFA exhibits the highest strength of 60 MPa when cured to stage 4-I,which is 26%higher than the peak strength of original AAFA.It is attributed to the significant rise in their specific surface area,which accelerates the dissolution of Si and Al from the precursor and facilitates the subsequent formation of N-A-S-H gels.Additionally,nanoscale zeolite crystals formed as secondary products fill the tiny gaps between amorphous products,thereby significantly improving their microstructure.In contrast,ultrafine fly ash,primarily composed of fragmented particles,necessitated a substantial amount of water,which adversely affects the absorption efficiency for microwave of AAFA specimens.Thus,ultrafine AAFA specimens consistently exhibit the lowest compressive strength.Specifically,at the end of curing,the compressive strength of these three specimens with microwave-curing is approximately 32%,59%,and 172%higher than that of the steam-cured sample,respectively.These findings demonstrate the compatibility of microwave-curing and fly ash refinement in enhancing the early compressive strength development of AAFA.展开更多
[Objective]The work is devoted to the study of irreversible deformation of artificial samples subjected to a set of standard experiments,with an aim to study their mechanical properties.The principal idea of the study...[Objective]The work is devoted to the study of irreversible deformation of artificial samples subjected to a set of standard experiments,with an aim to study their mechanical properties.The principal idea of the study is related to the preparation of an artificial material with an established constitutive behavior model.The existence of such a well-described material provides future opportunities to conduct controllable experiments on various mechanical processes in rock-like material for further development and validation of theoretical models used in rock mechanics.[Methods]A set of artificial samples was prepared for careful assessment through a number of loading tests.Experimental work was carried out to determine the rheological properties under conditions of triaxial compression tests and uniaxial tension.Triaxial loading tests are completed for 9 samples with varying radial stress levels(0-5 MPa).The samples are loaded up to the yield point with control of radial and volumetric strain.The experimental results,which contain the obtained interrelationships between axial and radial stresses and strains,are analyzed using the Drucker-Prager yield surface.Material hardening is taken into account through the non-associated plastic flow law with the cap model.Numerical modeling of sample loading is performed through the finite difference method.Mathematical model parameters are adjusted to minimize the discrepancy between numerical modeling results and experimental data.The design of a series of experimental studies necessary to determine all the parameters of the model has been studied.[Results]It is shown that the formulated mathematical model allows to reliably reproduce the inelastic behavior of the studied material,and it can be used to solve a set of applied problems in continuum mechanics,the problem of numerical simulation of hydraulic fracture growth in an elastoplastic medium in particular.It was found that for the entire range of applied lateral loads(0-5 MPa),the elastic limit varied from 2 to 4 MPa,after which the material began to behave plastically.It was also determined that at lateral loads≥3 MPa,compaction began to appear in the material beyond the yield point.Judging by the dependence of volumetric strains under a lateral load equal to 1.4 MPa,compaction should begin to appear even at lateral loads lower than 3 MPa.[Conclusion]Taking the plastic behavior of the material into account is necessary when moving on to modeling the hydraulic fracturing process in such a material,and the resultant plasticity parameters for the model material can be used for numerical modeling of elastoplastic deformation of the rock under consideration,including processes such as hydraulic fracture growth in a poroelastoplastic medium.[Significance]The suggested procedure to interpret results of experimental studies can be used for further numerical modeling of mechanical processes in rock masses with inelastic strain accumulation.This opportunity can increase the reliability of geomechanical models used for the optimization of hydrocarbon fields development.展开更多
Coal seam water injection in tunnels is an effective technical measure for preventing coal mine rock bursts.This study used the improved split Hopkinson pressure bar(SHPB)to apply three equal static stresses to water-...Coal seam water injection in tunnels is an effective technical measure for preventing coal mine rock bursts.This study used the improved split Hopkinson pressure bar(SHPB)to apply three equal static stresses to water-saturated coal to simulate the initial stress environment of coal at different depths.Then,dynamic mechanical experiments were conducted on the saturated coal at different depths to investigate the effects of water saturation and depth on the coal samples’dynamic mechanical properties.Under uniaxial compression and without lateral compression,the strength of coal samples decreased to varying degrees in the saturated state;under different depth conditions,the dynamic strength of coal in the saturated state decreased compared with that in the natural state.However,compared with that at 0 m,the reduction in the strength of coal under the saturated condition at 200,400,600,and 800 m was significantly reduced.The findings of this study provide a basic theoretical foundation for the prevention and control of dynamic coal mine disasters.展开更多
The spatial relationship between structural planes and principal stresses significantly affects the mechanical properties of deep hard rock.This paper examines the effect of the loading angle under true triaxial compr...The spatial relationship between structural planes and principal stresses significantly affects the mechanical properties of deep hard rock.This paper examines the effect of the loading angle under true triaxial compression.While previous studies focused on the angleβbetween the maximum principal stress and the structural plane,the role of angleω,between the intermediate principal stress and the structural plane,is often overlooked.Utilizing artificially prefabricated granite specimens with a single non-penetrating structural plane,we set the loading angleβto range from 0°to 90°across seven groups,and assignedωvalues of 0°and 90°in two separate groups.The results show that the peak strength is negatively correlated withβup to 45°,beyond which it tends to stabilize.The angleωexerts a strengthening effect on the peak strength.Deformation mainly occurs post-peak,with the strain values ε_(1) and ε_(3) reaching levels 2−3 times higher than those in intact rock.The structural plane significantly influences failure mode whenω=0°,while failure localizes near the σ_(3) surface of the specimens whenω=90°.The findings enhance data on structural plane rocks under triaxial compression and inform theoretical research,excavation,and support design of rock structures.展开更多
基金Supported by The Featured Innovation Projects of the General University of Guangdong Province(2023KTSCX096)The Special Projects in Key Areas of Guangdong Province(ZDZX1088)Research Team Project of Guangdong University of Education(2024KYCXTD018)。
文摘This paper explores the recovery of block sparse signals in frame-based settings using the l_(2)/l_(q)-synthesis technique(0<q≤1).We propose a new null space property,referred to as block D-NSP_(q),which is based on the dictionary D.We establish that matrices adhering to the block D-NSP_(q)condition are both necessary and sufficient for the exact recovery of block sparse signals via l_(2)/l_(q)-synthesis.Additionally,this condition is essential for the stable recovery of signals that are block-compressible with respect to D.This D-NSP_(q)property is identified as the first complete condition for successful signal recovery using l_(2)/l_(q)-synthesis.Furthermore,we assess the theoretical efficacy of the l2/lq-synthesis method under conditions of measurement noise.
基金Project(61171133) supported by the National Natural Science Foundation of ChinaProject(CX2011B019) supported by Hunan Provincial Innovation Foundation for Postgraduate,ChinaProject(B110404) supported by Innovation Foundation for Outstanding Postgraduates of National University of Defense Technology,China
文摘High resolution range imaging with correlation processing suffers from high sidelobe pedestal in random frequency-hopping wideband radar. After the factors which affect the sidelobe pedestal being analyzed, a compressed sensing based algorithm for high resolution range imaging and a new minimized ll-norm criterion for motion compensation are proposed. The random hopping of the transmitted carrier frequency is converted to restricted isometry property of the observing matrix. Then practical problems of imaging model solution and signal parameter design are resolved. Due to the particularity of the proposed algorithm, two new indicators of range profile, i.e., average signal to sidelobe ratio and local similarity, are defined. The chamber measured data are adopted to testify the validity of the proposed algorithm, and simulations are performed to analyze the precision of velocity measurement as well as the performance of motion compensation. The simulation results show that the proposed algorithm has such advantages as high precision velocity measurement, low sidelobe and short period imaging, which ensure robust imaging for moving targets when signal-to-noise ratio is above 10 dB.
基金supported by the Prominent Youth Fund of the National Natural Science Foundation of China (61025006)
文摘The theory of compressed sensing (CS) provides a new chance to reduce the data acquisition time and improve the data usage factor of the stepped frequency radar system. In light of the sparsity of radar target reflectivity, two imaging methods based on CS, termed the CS-based 2D joint imaging algorithm and the CS-based 2D decoupled imaging algorithm, are proposed. These methods incorporate the coherent mixing operation into the sparse dictionary, and take random measurements in both range and azimuth directions to get high resolution radar images, thus can remarkably reduce the data rate and simplify the hardware design of the radar system while maintaining imaging quality. Ex- periments from both simulated data and measured data in the anechoic chamber show that the proposed imaging methods can get more focused images than the traditional fast Fourier trans- form method. Wherein the joint algorithm has stronger robustness and can provide clearer inverse synthetic aperture radar images, while the decoupled algorithm is computationally more efficient but has slightly degraded imaging quality, which can be improved by increasing measurements or using a robuster recovery algorithm nevertheless.
文摘In airborne array synthetic aperture radar(SAR), the three-dimensional(3D) imaging performance and cross-track resolution depends on the length of the equivalent array. In this paper, Barker sequence criterion is used for sparse flight sampling of airborne array SAR, in order to obtain high cross-track resolution in as few times of flights as possible. Under each flight, the imaging algorithm of back projection(BP) and the data extraction method based on modified uniformly redundant arrays(MURAs) are utilized to obtain complex 3D image pairs. To solve the side-lobe noise in images, the interferometry between each image pair is implemented, and compressed sensing(CS) reconstruction is adopted in the frequency domain. Furthermore, to restore the geometrical relationship between each flight, the phase information corresponding to negative MURA is compensated on each single-pass image reconstructed by CS. Finally,by coherent accumulation of each complex image, the high resolution in cross-track direction is obtained. Simulations and experiments in X-band verify the availability.
基金supported by the National Natural Science Foundation of China(60972056)the Innovation Foundation of Shanghai Education Committee(09ZZ89)Shanghai Leading Academic Discipline Project and STCSM(S30108and08DZ2231100)
文摘A compressed sensing(CS) based channel estimation algorithm is proposed by using the delay-Doppler sparsity of the fast fading channel.A compressive basis expansion channel model with sparsity in both time and frequency domains is given.The pilots in accordance with a novel random pilot matrix in both time and frequency domains are sent to measure the delay-Doppler sparsity channel.The relatively nonzero channel coefficients are tracked by random pilots at a sampling rate significantly below the Nyquist rate.The sparsity channels are estimated from a very limited number of channel measurements by the basis pursuit algorithm.The proposed algorithm can effectively improve the channel estimation performance when the number of pilot symbols is reduced with improvement of throughput efficiency.
基金supported by the National Natural Science Foundation of China(61773202,71874081)the Special Financial Grant from China Postdoctoral Science Foundation(2017T100366)+2 种基金the Key Laboratory of Avionics System Integrated Technology for National Defense Science and Technology,China Institute of Avionics Radio Electronics(6142505180407)the Open Fund of CAAC Key laboratory of General Aviation Operation,Civil Aviation Management Institute of China(CAMICKFJJ-2019-04)the Innovation Project of the Civil Aviation Administration of China(EAB19001)。
文摘Signal reconstruction is a significantly important theoretical issue for compressed sensing.Considering the situation of signal reconstruction with unknown sparsity,the conventional signal reconstruction algorithms usually perform low accuracy.In this work,a sparsity adaptive signal reconstruction algorithm using sensing dictionary is proposed to achieve a lower reconstruction error.The sparsity estimation method is combined with the construction of the support set based on sensing dictionary.Using the adaptive sparsity method,an iterative signal reconstruction algorithm is proposed.The sufficient conditions for the exact signal reconstruction of the algorithm also is proved by theory.According to a series of simulations,the results show that the proposed method has higher precision compared with other state-of-the-art signal reconstruction algorithms especially in a high compression ratio scenarios.
基金Project(11174235)supported by the National Natural Science Foundation of ChinaProject(3102014JC02010301)supported by the Fundamental Research Funds for the Central Universities,China
文摘The use of underwater acoustic data has rapidly expanded with the application of multichannel, large-aperture underwater detection arrays. This study presents an underwater acoustic data compression method that is based on compressed sensing. Underwater acoustic signals are transformed into the sparse domain for data storage at a receiving terminal, and the improved orthogonal matching pursuit(IOMP) algorithm is used to reconstruct the original underwater acoustic signals at a data processing terminal. When an increase in sidelobe level occasionally causes a direction of arrival estimation error, the proposed compression method can achieve a 10 times stronger compression for narrowband signals and a 5 times stronger compression for wideband signals than the orthogonal matching pursuit(OMP) algorithm. The IOMP algorithm also reduces the computing time by about 20% more than the original OMP algorithm. The simulation and experimental results are discussed.
基金supported by the National Natural Science Foundation of China(61901154,41704154)Zhejiang Province Science Foundation for Youths(LQ19F010006).
文摘To acquire global navigation satellite system(GNSS)signals means four-dimension acquisition of bit transition,Doppler frequency,Doppler rate,and code phase in high-dynamic and weak signal environments,which needs a high computational cost.To reduce the computations,this paper proposes a twostep compressed acquisition method(TCAM)for the post-correlation signal parameters estimation.Compared with the fast Fourier transform(FFT)based methods,TCAM uses fewer frequency search points.In this way,the proposed method reduces complex multiplications,and uses real multiplications instead of improving the accuracy of the Doppler frequency and the Doppler rate.Furthermore,the differential process between two adjacent milliseconds is used for avoiding the impact of bit transition and the Doppler frequency on the integration peak.The results demonstrate that due to the reduction of complex multiplications,the computational cost of TCAM is lower than that of the FFT based method under the same signal to noise ratio(SNR).
基金supported by the National Natural Science Foundation of China(61271342)
文摘An imaging algorithm based on compressed sensing(CS) for the multi-ship motion target is presented. In order to reduce the quantity of data transmission in searching the ships on a large sea area, both range and azimuth of the moving ship targets are converted into sparse representation under certain signal basis. The signal reconstruction algorithm based on CS at a distant calculation station, and the Keystone and fractional Fourier transform(FRFT) algorithm are used to compensate range migration and obtain Doppler frequency. When the sea ships satisfy the sparsity, the algorithm can obtain higher resolution in both range and azimuth than the conventional imaging algorithm. Some simulations are performed to verify the reliability and stability.
文摘In the process of image transmission, the famous JPEG and JPEG-2000 compression methods need more transmission time as it is difficult for them to compress the image with a low compression rate. Recently the compressed sensing(CS) theory was proposed, which has earned great concern as it can compress an image with a low compression rate, meanwhile the original image can be perfectly reconstructed from only a few compressed data. The CS theory is used to transmit the high resolution astronomical image and build the simulation environment where there is communication between the satellite and the Earth. Number experimental results show that the CS theory can effectively reduce the image transmission and reconstruction time. Even with a very low compression rate, it still can recover a higher quality astronomical image than JPEG and JPEG-2000 compression methods.
基金Projects(61203287,61302138,11126274)supported by the National Natural Science Foundation of ChinaProject(2013CFB414)supported by Natural Science Foundation of Hubei Province,ChinaProject(CUGL130247)supported by the Special Fund for Basic Scientific Research of Central Colleges of China University of Geosciences
文摘A new iterative greedy algorithm based on the backtracking technique was proposed for distributed compressed sensing(DCS) problem. The algorithm applies two mechanisms for precise recovery soft thresholding and cutting. It can reconstruct several compressed signals simultaneously even without any prior information of the sparsity, which makes it a potential candidate for many practical applications, but the numbers of non-zero(significant) coefficients of signals are not available. Numerical experiments are conducted to demonstrate the validity and high performance of the proposed algorithm, as compared to other existing strong DCS algorithms.
基金supported by the National Key Research and Development Plan(2018YFB1201601-12)。
文摘Due to unreliable and bandwidth-limited characteristics of communication link in networked control systems,the realtime compensated methods for single-output systems and multioutput systems are proposed in this paper based on the compressed sensing(CS)theory and sliding window technique,by which the estimates of dropping data packets in the feedback channel are obtained and the performance degradation induced by packet drops is reduced.Specifically,in order to reduce the cumulative error caused by the algorithm,the compensated estimates for single-output systems are corrected via the regularization term;considering the process of single-packet transmission,a new sequential CS framework of sensor data streams is introduced to effectively compensate the dropping packet on single-channel of multi-output systems;in presence of the medium access constraints on multi-channel,the communication sequence for scheduling is coupled to the algorithm and the estimates of the multiple sensors for multi-output systems are obtained via the regularization term.Simulation results illustrate that the proposed methods perform well and receive satisfactory performance.
基金Supported by the Natural Science Foundation of Ningxia University(ZR1124)
文摘G-protein coupled receptors(GPCRs) have a relatively conservative seven transmembrane helix(7tm) regions, and their N and C termini are various. In order to strengthen the features of GPCR families, N and C termini were removed in this study, then frequency features in the form of single amino acid and dipeptide compositions for recognition of human GPCRs were analyzed and extracted based on the compressed amino acid alphabets. Based on these features, classifiers were developed using support vector machine(SVM). The ability of different compressed methods was investigated. The testing results demonstrated that the suitable choice of compressed method combined with amino acid composition information could get good performance for the recognition of human GPCRs.
基金Project(2011CB013800)supported by the National Basic Research Program of ChinaProject(10672063)supported by the National Natural Science Foundation of ChinaProject(Y201119)supported by the Hubei Province Key Laboratory of Systems Science in Metallurgical Process,China
文摘In order to describe the three-stage creep behavior of compressed asphalt mastic, a visco-elastoplastic damage constitutive model is proposed in this work. The model parameters are treated as quadratic polynomial functions with respect to stress and temperature. A series of uniaxial compressive creep experiments are performed at various stress and temperature conditions in order to determine these parameter functions, and then the proposed model is validated by comparison between the predictions and experiments at the other loading conditions. It is shown that very small permanent deformation at low stress and temperature increases rapidly with elevated stress or temperature and the damage may initiate in the stationary stage but mainly develops in the accelerated stage. Compared with the visco-elastoplastic models without damage, the predictions from the proposed model is in better agreement with the experiments, and can better capture the rate-dependency in creep responses of asphalt mastic especially below its softening point of 47 ℃
基金supported by the National Natural Science Foundation of China(62001481,61890542,62071475)the Natural Science Foundation of Hunan Province(2022JJ40561)the Research Program of National University of Defense Technology(ZK22-46).
文摘Nonperiodic interrupted sampling repeater jamming(ISRJ)against inverse synthetic aperture radar(ISAR)can obtain two-dimensional blanket jamming performance by joint fast and slow time domain interrupted modulation,which is obviously dif-ferent from the conventional multi-false-target deception jam-ming.In this paper,a suppression method against this kind of novel jamming is proposed based on inter-pulse energy function and compressed sensing theory.By utilizing the discontinuous property of the jamming in slow time domain,the unjammed pulse is separated using the intra-pulse energy function diffe-rence.Based on this,the two-dimensional orthogonal matching pursuit(2D-OMP)algorithm is proposed.Further,it is proposed to reconstruct the ISAR image with the obtained unjammed pulse sequence.The validity of the proposed method is demon-strated via the Yake-42 plane data simulations.
基金Project(42202318)supported by the National Natural Science Foundation of ChinaProject(252300421199)supported by the Natural Science Foundation of Henan Province,ChinaProject(2024JJ6219)supported by the Hunan Provincial Natural Science Foundation of China。
文摘The undrained mechanical behavior of unsaturated completely weathered granite(CWG)is highly susceptible to alterations in the hydraulic environment,particularly under uniaxial loading conditions,due to the unique nature of this soil type.In this study,a series of unconfined compression tests were carried out on unsaturated CWG soil in an underground engineering site,and the effects of varying the environmental variables on the main undrained mechanical properties were analyzed.Based on the experimental results,a novel constitutive model was then established using the damage mechanics theory and the undetermined coefficient method.The results demonstrate that the curves of remolded CWG specimens with different moisture contents and dry densities exhibited diverse characteristics,including brittleness,significant softening,and ductility.As a typical indicator,the unconfined compression strength of soil specimens initially increased with an increase in moisture content and then decreased.Meanwhile,an optimal moisture content of approximately 10.5%could be observed,while a critical moisture content value of 13.0%was identified,beyond which the strength of the specimen decreases sharply.Moreover,the deformation and fracture of CWG specimens were predominantly caused by shear failure,and the ultimate failure modes were primarily influenced by moisture content rather than dry density.Furthermore,by comparing several similar models and the experimental data,the proposed model could accurately replicate the undrained mechanical characteristics of unsaturated CWG soil,and quantitatively describe the key mechanical indexes.These findings offer a valuable reference point for understanding the underlying mechanisms,anticipating potential risks,and implementing effective control measures in similar underground engineering projects.
文摘Microwave-curing and mechanical grinding of fly ash have both beenadopted as effective methods for improving the early-age strength of alkali-activated fly ash(AAFA)binders.This study combined these two approaches by synthesizing AAFA using original,medium-fine,and ultrafine fly ash as precursors,and then specimens were cured with a five-stage temperature-controlled microwave.The compressive strength results indicate that the original AAFA develops the highest strength initially during microwave-curing,reaching 28 MPa at stage 2.Medium-fine AAFA exhibits the highest strength of 60 MPa when cured to stage 4-I,which is 26%higher than the peak strength of original AAFA.It is attributed to the significant rise in their specific surface area,which accelerates the dissolution of Si and Al from the precursor and facilitates the subsequent formation of N-A-S-H gels.Additionally,nanoscale zeolite crystals formed as secondary products fill the tiny gaps between amorphous products,thereby significantly improving their microstructure.In contrast,ultrafine fly ash,primarily composed of fragmented particles,necessitated a substantial amount of water,which adversely affects the absorption efficiency for microwave of AAFA specimens.Thus,ultrafine AAFA specimens consistently exhibit the lowest compressive strength.Specifically,at the end of curing,the compressive strength of these three specimens with microwave-curing is approximately 32%,59%,and 172%higher than that of the steam-cured sample,respectively.These findings demonstrate the compatibility of microwave-curing and fly ash refinement in enhancing the early compressive strength development of AAFA.
文摘[Objective]The work is devoted to the study of irreversible deformation of artificial samples subjected to a set of standard experiments,with an aim to study their mechanical properties.The principal idea of the study is related to the preparation of an artificial material with an established constitutive behavior model.The existence of such a well-described material provides future opportunities to conduct controllable experiments on various mechanical processes in rock-like material for further development and validation of theoretical models used in rock mechanics.[Methods]A set of artificial samples was prepared for careful assessment through a number of loading tests.Experimental work was carried out to determine the rheological properties under conditions of triaxial compression tests and uniaxial tension.Triaxial loading tests are completed for 9 samples with varying radial stress levels(0-5 MPa).The samples are loaded up to the yield point with control of radial and volumetric strain.The experimental results,which contain the obtained interrelationships between axial and radial stresses and strains,are analyzed using the Drucker-Prager yield surface.Material hardening is taken into account through the non-associated plastic flow law with the cap model.Numerical modeling of sample loading is performed through the finite difference method.Mathematical model parameters are adjusted to minimize the discrepancy between numerical modeling results and experimental data.The design of a series of experimental studies necessary to determine all the parameters of the model has been studied.[Results]It is shown that the formulated mathematical model allows to reliably reproduce the inelastic behavior of the studied material,and it can be used to solve a set of applied problems in continuum mechanics,the problem of numerical simulation of hydraulic fracture growth in an elastoplastic medium in particular.It was found that for the entire range of applied lateral loads(0-5 MPa),the elastic limit varied from 2 to 4 MPa,after which the material began to behave plastically.It was also determined that at lateral loads≥3 MPa,compaction began to appear in the material beyond the yield point.Judging by the dependence of volumetric strains under a lateral load equal to 1.4 MPa,compaction should begin to appear even at lateral loads lower than 3 MPa.[Conclusion]Taking the plastic behavior of the material into account is necessary when moving on to modeling the hydraulic fracturing process in such a material,and the resultant plasticity parameters for the model material can be used for numerical modeling of elastoplastic deformation of the rock under consideration,including processes such as hydraulic fracture growth in a poroelastoplastic medium.[Significance]The suggested procedure to interpret results of experimental studies can be used for further numerical modeling of mechanical processes in rock masses with inelastic strain accumulation.This opportunity can increase the reliability of geomechanical models used for the optimization of hydrocarbon fields development.
基金Projects(52225403,52074112)supported by the National Natural Science Foundation of ChinaProject(2022CFD009)supported by the Hubei Natural Science Foundation Innovation and Development Joint Fund Key Project,China+2 种基金Project(SDGZK2423)supported by the State Key Laboratory of Intelligent Construction and Healthy Operation and Maintenance of Deep Underground Engineering,ChinaProject(HJZKYBKT2024111)supported by the Xiangyang Federation of Social Sciences“Hanjiang Think Tank”Project,ChinaProject supported by the Hubei Superior and Distinctive Discipline Group of“New Energy Vehicle and Smart Transportation”,China。
文摘Coal seam water injection in tunnels is an effective technical measure for preventing coal mine rock bursts.This study used the improved split Hopkinson pressure bar(SHPB)to apply three equal static stresses to water-saturated coal to simulate the initial stress environment of coal at different depths.Then,dynamic mechanical experiments were conducted on the saturated coal at different depths to investigate the effects of water saturation and depth on the coal samples’dynamic mechanical properties.Under uniaxial compression and without lateral compression,the strength of coal samples decreased to varying degrees in the saturated state;under different depth conditions,the dynamic strength of coal in the saturated state decreased compared with that in the natural state.However,compared with that at 0 m,the reduction in the strength of coal under the saturated condition at 200,400,600,and 800 m was significantly reduced.The findings of this study provide a basic theoretical foundation for the prevention and control of dynamic coal mine disasters.
基金Projects(51979268,52279117,52309146)supported by the National Natural Science Foundation of ChinaProject(SKLGME-JBGS2401)supported by the Fund of State Key Laboratory of Geomechanics and Geotechnical Engineering,China。
文摘The spatial relationship between structural planes and principal stresses significantly affects the mechanical properties of deep hard rock.This paper examines the effect of the loading angle under true triaxial compression.While previous studies focused on the angleβbetween the maximum principal stress and the structural plane,the role of angleω,between the intermediate principal stress and the structural plane,is often overlooked.Utilizing artificially prefabricated granite specimens with a single non-penetrating structural plane,we set the loading angleβto range from 0°to 90°across seven groups,and assignedωvalues of 0°and 90°in two separate groups.The results show that the peak strength is negatively correlated withβup to 45°,beyond which it tends to stabilize.The angleωexerts a strengthening effect on the peak strength.Deformation mainly occurs post-peak,with the strain values ε_(1) and ε_(3) reaching levels 2−3 times higher than those in intact rock.The structural plane significantly influences failure mode whenω=0°,while failure localizes near the σ_(3) surface of the specimens whenω=90°.The findings enhance data on structural plane rocks under triaxial compression and inform theoretical research,excavation,and support design of rock structures.