Online accurate recognition of target tactical intention in beyond-visual-range (BVR) air combat is an important basis for deep situational awareness and autonomous air combat decision-making, which can create pre-emp...Online accurate recognition of target tactical intention in beyond-visual-range (BVR) air combat is an important basis for deep situational awareness and autonomous air combat decision-making, which can create pre-emptive tactical opportunities for the fighter to gain air superiority. The existing methods to solve this problem have some defects such as dependence on empirical knowledge, difficulty in interpreting the recognition results, and inability to meet the requirements of actual air combat. So an online hierarchical recognition method for target tactical intention in BVR air combat based on cascaded support vector machine (CSVM) is proposed in this study. Through the mechanism analysis of BVR air combat, the instantaneous and cumulative feature information of target trajectory and relative situation information are introduced successively using online automatic decomposition of target trajectory and hierarchical progression. Then the hierarchical recognition model from target maneuver element, tactical maneuver to tactical intention is constructed. The CSVM algorithm is designed for solving this model, and the computational complexity is decomposed by the cascaded structure to overcome the problems of convergence and timeliness when the dimensions and number of training samples are large. Meanwhile, the recognition result of each layer can be used to support the composition analysis and interpretation of target tactical intention. The simulation results show that the proposed method can effectively realize multi-dimensional online accurate recognition of target tactical intention in BVR air combat.展开更多
由于齿轮箱中振动信号的复杂性和非平稳性,致使齿轮箱混合故障诊断工作具有一定难度。针对这一问题提出基于NIC-DWT-WOASVM的齿轮箱混合故障诊断方法。首先通过窄带干扰消除(Narrow Band Interference Canceller,NIC)滤除原始信号中齿...由于齿轮箱中振动信号的复杂性和非平稳性,致使齿轮箱混合故障诊断工作具有一定难度。针对这一问题提出基于NIC-DWT-WOASVM的齿轮箱混合故障诊断方法。首先通过窄带干扰消除(Narrow Band Interference Canceller,NIC)滤除原始信号中齿轮啮合和转轴等窄带干扰信号,接着对信号进行离散小波变换(Discrete Wavelet Transform,DWT),重构小波系数得到小波分量,提取分量的方差作为特征参数构成特征矩阵样本。针对传统优化支持向量机收敛速度慢及容易局部最优等问题,提出鲸鱼算法优化的支持向量机(Whale Optimization Algorithm Support Vector Machine,WOASVM),运用训练样本对WOASVM进行训练得到优化分类模型,将测试样本输入到优化模型中得到诊断结果。为验证方法的有效性,开展了变工况下齿轮箱混合故障实验,通过实验分析及与其他方法的比较,证明方法对于齿轮箱混合故障诊断是有效的。展开更多
基金The authors gratefully acknowledge the support of the National Natural Science Foundation of China under Grant No.62076204 and Grant No.61612385in part by the Postdoctoral Science Foundation of China under Grants No.2021M700337in part by the Fundamental Research Funds for the Central Universities under Grant No.3102019ZX016.
文摘Online accurate recognition of target tactical intention in beyond-visual-range (BVR) air combat is an important basis for deep situational awareness and autonomous air combat decision-making, which can create pre-emptive tactical opportunities for the fighter to gain air superiority. The existing methods to solve this problem have some defects such as dependence on empirical knowledge, difficulty in interpreting the recognition results, and inability to meet the requirements of actual air combat. So an online hierarchical recognition method for target tactical intention in BVR air combat based on cascaded support vector machine (CSVM) is proposed in this study. Through the mechanism analysis of BVR air combat, the instantaneous and cumulative feature information of target trajectory and relative situation information are introduced successively using online automatic decomposition of target trajectory and hierarchical progression. Then the hierarchical recognition model from target maneuver element, tactical maneuver to tactical intention is constructed. The CSVM algorithm is designed for solving this model, and the computational complexity is decomposed by the cascaded structure to overcome the problems of convergence and timeliness when the dimensions and number of training samples are large. Meanwhile, the recognition result of each layer can be used to support the composition analysis and interpretation of target tactical intention. The simulation results show that the proposed method can effectively realize multi-dimensional online accurate recognition of target tactical intention in BVR air combat.