Boron is a very promising and highly attractive fuel because of high calorific value. However, the practical applications in explosives and propellants of boron have been limited by long ignition delay time and low co...Boron is a very promising and highly attractive fuel because of high calorific value. However, the practical applications in explosives and propellants of boron have been limited by long ignition delay time and low combustion efficiency. Herein, nano-Al and graphene fluoride(GF) as surface activated materials are employed to coat boron(B) particles to improve ignition and combustion performance. The reaction heat of nano-Al coated B/KNO_(3)and GF coated B/KNO_(3)are 1116.83 J/g and 862.69 J/g, respectively, which are higher than that of pure B/KNO_(3)(823.39 J/g). The ignition delay time of B/KNO_(3)could be reduced through nano-Al coating. The shortest ignition delay time is only 75 ms for B coated with nano-Al of 8 wt%, which is much shorter than that of pure B/KNO_(3)(109 ms). However, the ignition delay time of B/KNOcoated with GF has been increased from 109 to 187 ms. B coated with GF and nano-Al shown significantly influence on the pressure output and flame structure of B/KNO_(3). Furthermore, the effects of B/O ratios on the pressure output and ignition delay time have been further fully studied. For B/KNO_(3)coated with nano-Al and GF, the highest pressures are 88 KPa and 59 KPa for B/O ratio of 4:6, and the minimum ignition delay time are 94 ms and 148 ms for B/O ratio of 7:3. Based on the above results, the reaction process of boron coated with GF and nano-Al has been proposed to understand combustion mechanism.展开更多
As an innovative propulsion technique, combustion mechanism of laser-augmented chemical propulsion has still to be ascertained. Benefiting from high nitrogen content and thermal stability, 5-aminotetrazole is a suitab...As an innovative propulsion technique, combustion mechanism of laser-augmented chemical propulsion has still to be ascertained. Benefiting from high nitrogen content and thermal stability, 5-aminotetrazole is a suitable ingredient for LACP. Under a flowing nitrogen environment, two kinds of unique burning surfaces were observed to occur for 5-ATZ, used as a single reacting propellant ingredient with the addition of carbon, under laser ablation. Both surfaces are hollow structures and differ by the possible presence of edges. Using micro computed tomography, the 3D perspective structures of both surfaces were revealed. Resorting to various characterization methods, a unified formation mechanism for both surfaces is proposed. This mechanism specifically applies to laser ablation, but could be crucial to common burning mechanisms in LACP.展开更多
This paper represents an attempt to extend the mechanisms of reactions and kinetics of a methane combustion reaction.Three saddle points(SPs) are identified in the reaction CH_4+ O(~3P) → OH + CH_3 using the co...This paper represents an attempt to extend the mechanisms of reactions and kinetics of a methane combustion reaction.Three saddle points(SPs) are identified in the reaction CH_4+ O(~3P) → OH + CH_3 using the complete active space selfconsistent field and the multireference configuration interaction methods with a proper active space. Our calculations give a fairly accurate description of the regions around the twin first-order SPs(~3A' and ~3A〞) along the direction of O(~3P) attacking a near-collinear H–CH_3. One second-order SP^(2nd)(~3E) between the above twin SPs is the result of the C_(3v) symmetry Jahn–Teller coupling within the branching space. Further kinetic calculations are performed with the canonical unified statistical theory method with the temperature ranging from 298 K to 1000 K. The rate constants are also reported. The present work reveals the reaction mechanism of hydrogen-abstraction by the O(~3P) from methane, and develops a better understanding for the role of SPs. In addition, a comparison of the reactions of O(~3P) with methane through different channels allows a molecule-level discussion of the reactivity and mechanism of the title reaction.展开更多
The flame propagation processes of MgH_(2)dust clouds with four different particle sizes were recorded by a high-speed camera.The dynamic flame temperature distributions of MgH_(2)dust clouds were reconstructed by the...The flame propagation processes of MgH_(2)dust clouds with four different particle sizes were recorded by a high-speed camera.The dynamic flame temperature distributions of MgH_(2)dust clouds were reconstructed by the two-color pyrometer technique,and the chemical composition of solid combustion residues were analyzed.The experimental results showed that the average flame propagation velocities of 23μm,40μm,60μm and 103μm MgH_(2)dust clouds in the stable propagation stage were 3.7 m/s,2.8 m/s,2.1 m/s and 0.9 m/s,respectively.The dust clouds with smaller particle sizes had faster flame propagation velocity and stronger oscillation intensity,and their flame temperature distributions were more even and the temperature gradients were smaller.The flame structures of MgH_(2)dust clouds were significantly affected by the particle sinking velocity,and the combustion processes were accompanied by micro-explosion of particles.The falling velocities of 23μm and 40μm MgH_(2)particles were 2.24 cm/s and 6.71 cm/s,respectively.While the falling velocities of 60μm and 103μm MgH_(2)particles were as high as 15.07 cm/s and 44.42 cm/s,respectively,leading to a more rapid downward development and irregular shape of the flame.Furthermore,the dehydrogenation reaction had a significant effect on the combustion performance of MgH_(2)dust.The combustion of H_(2)enhanced the ignition and combustion characteristics of MgH_(2)dust,resulting in a much higher explosion power than the pure Mg dust.The micro-structure characteristics and combustion residues composition analysis of MgH_(2)dust indicated that the combustion control mechanism of MgH_(2)dust flame was mainly the heterogeneous reaction,which was affected by the dehydrogenation reaction.展开更多
基金supported by the National Natural Science Foundation of China (11872341 and 22075261)。
文摘Boron is a very promising and highly attractive fuel because of high calorific value. However, the practical applications in explosives and propellants of boron have been limited by long ignition delay time and low combustion efficiency. Herein, nano-Al and graphene fluoride(GF) as surface activated materials are employed to coat boron(B) particles to improve ignition and combustion performance. The reaction heat of nano-Al coated B/KNO_(3)and GF coated B/KNO_(3)are 1116.83 J/g and 862.69 J/g, respectively, which are higher than that of pure B/KNO_(3)(823.39 J/g). The ignition delay time of B/KNO_(3)could be reduced through nano-Al coating. The shortest ignition delay time is only 75 ms for B coated with nano-Al of 8 wt%, which is much shorter than that of pure B/KNO_(3)(109 ms). However, the ignition delay time of B/KNOcoated with GF has been increased from 109 to 187 ms. B coated with GF and nano-Al shown significantly influence on the pressure output and flame structure of B/KNO_(3). Furthermore, the effects of B/O ratios on the pressure output and ignition delay time have been further fully studied. For B/KNO_(3)coated with nano-Al and GF, the highest pressures are 88 KPa and 59 KPa for B/O ratio of 4:6, and the minimum ignition delay time are 94 ms and 148 ms for B/O ratio of 7:3. Based on the above results, the reaction process of boron coated with GF and nano-Al has been proposed to understand combustion mechanism.
基金supported by the Shanghai Aerospace Science & Technology Innovation Fund (Grant No. SAST201363)the Fundamental Research Funds for the Central Universities (Grant No. 30919012102 in part)。
文摘As an innovative propulsion technique, combustion mechanism of laser-augmented chemical propulsion has still to be ascertained. Benefiting from high nitrogen content and thermal stability, 5-aminotetrazole is a suitable ingredient for LACP. Under a flowing nitrogen environment, two kinds of unique burning surfaces were observed to occur for 5-ATZ, used as a single reacting propellant ingredient with the addition of carbon, under laser ablation. Both surfaces are hollow structures and differ by the possible presence of edges. Using micro computed tomography, the 3D perspective structures of both surfaces were revealed. Resorting to various characterization methods, a unified formation mechanism for both surfaces is proposed. This mechanism specifically applies to laser ablation, but could be crucial to common burning mechanisms in LACP.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.51574016 and 51604018)
文摘This paper represents an attempt to extend the mechanisms of reactions and kinetics of a methane combustion reaction.Three saddle points(SPs) are identified in the reaction CH_4+ O(~3P) → OH + CH_3 using the complete active space selfconsistent field and the multireference configuration interaction methods with a proper active space. Our calculations give a fairly accurate description of the regions around the twin first-order SPs(~3A' and ~3A〞) along the direction of O(~3P) attacking a near-collinear H–CH_3. One second-order SP^(2nd)(~3E) between the above twin SPs is the result of the C_(3v) symmetry Jahn–Teller coupling within the branching space. Further kinetic calculations are performed with the canonical unified statistical theory method with the temperature ranging from 298 K to 1000 K. The rate constants are also reported. The present work reveals the reaction mechanism of hydrogen-abstraction by the O(~3P) from methane, and develops a better understanding for the role of SPs. In addition, a comparison of the reactions of O(~3P) with methane through different channels allows a molecule-level discussion of the reactivity and mechanism of the title reaction.
基金supported by the National Natural Science Foundation of China(Grant Nos.12272001,11972046)the Outstanding Youth Project of Natural Science Foundation of Anhui Province(Grant No.2108085Y02)the Major Project of Anhui University Natural Science Foundation(Grant No.KJ2020ZD30)。
文摘The flame propagation processes of MgH_(2)dust clouds with four different particle sizes were recorded by a high-speed camera.The dynamic flame temperature distributions of MgH_(2)dust clouds were reconstructed by the two-color pyrometer technique,and the chemical composition of solid combustion residues were analyzed.The experimental results showed that the average flame propagation velocities of 23μm,40μm,60μm and 103μm MgH_(2)dust clouds in the stable propagation stage were 3.7 m/s,2.8 m/s,2.1 m/s and 0.9 m/s,respectively.The dust clouds with smaller particle sizes had faster flame propagation velocity and stronger oscillation intensity,and their flame temperature distributions were more even and the temperature gradients were smaller.The flame structures of MgH_(2)dust clouds were significantly affected by the particle sinking velocity,and the combustion processes were accompanied by micro-explosion of particles.The falling velocities of 23μm and 40μm MgH_(2)particles were 2.24 cm/s and 6.71 cm/s,respectively.While the falling velocities of 60μm and 103μm MgH_(2)particles were as high as 15.07 cm/s and 44.42 cm/s,respectively,leading to a more rapid downward development and irregular shape of the flame.Furthermore,the dehydrogenation reaction had a significant effect on the combustion performance of MgH_(2)dust.The combustion of H_(2)enhanced the ignition and combustion characteristics of MgH_(2)dust,resulting in a much higher explosion power than the pure Mg dust.The micro-structure characteristics and combustion residues composition analysis of MgH_(2)dust indicated that the combustion control mechanism of MgH_(2)dust flame was mainly the heterogeneous reaction,which was affected by the dehydrogenation reaction.