期刊导航
期刊开放获取
上海教育软件发展有限公..
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
2
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
一种改进的组合SOFM-SVR股票价格预测模型
被引量:
5
1
作者
片坤
徐晓钟
张益铭
《计算机应用与软件》
CSCD
2010年第5期172-175,178,共5页
股票市场价格预测一直以来都被认为是金融时序预测领域的一项具有挑战性的工作。综合回归支持向量机SVR和自组织特征函数(SOFM)技术,并引入基于过滤的特征选择算法确定重要的输入变量,在SVR核函数的参数选择上采用粒子群优化算法(PSO)。...
股票市场价格预测一直以来都被认为是金融时序预测领域的一项具有挑战性的工作。综合回归支持向量机SVR和自组织特征函数(SOFM)技术,并引入基于过滤的特征选择算法确定重要的输入变量,在SVR核函数的参数选择上采用粒子群优化算法(PSO)。SOFM算法将训练样本聚类,然后分别应用SVR来预测股票价格走势。最后应用上海A股的浦发银行日数据来做股票价格日预测,实验结果表明,经过改进的SOFM-SVR模型与之前的SOFM-SVR模型相比,在预测精度和训练时间上都有了较大的提高。
展开更多
关键词
组合预测
sofm-svr
特征选择
pso
算法
在线阅读
下载PDF
职称材料
基于自适应混合粒子群优化的软件缺陷预测特征选择方法
被引量:
4
2
作者
于振华
刘争气
+1 位作者
刘颖
郭城
《计算机应用》
CSCD
北大核心
2023年第4期1206-1213,共8页
特征选择是软件缺陷预测中数据预处理的关键步骤。针对现有特征选择方法存在的降维效果不显著、选取的最优特征子集分类精度低等问题,提出了一种基于自适应混合粒子群优化(SHPSO)的软件缺陷预测特征选择方法。首先,结合种群划分设计了基...
特征选择是软件缺陷预测中数据预处理的关键步骤。针对现有特征选择方法存在的降维效果不显著、选取的最优特征子集分类精度低等问题,提出了一种基于自适应混合粒子群优化(SHPSO)的软件缺陷预测特征选择方法。首先,结合种群划分设计了基于Q学习的自适应权重更新策略,其中引入Q学习根据粒子的状态自适应地调整惯性权重;其次,为了平衡算法前期的全局搜索能力和后期的收敛速度,提出了基于曲线自适应的时变学习因子;最后,采用混合位置更新策略帮助粒子尽快跳出局部最优解,并增加粒子的多样性。在12个公开软件缺陷数据集上进行实验验证的结果表明,与使用全部特征的方法、常用的传统特征选择方法及主流的基于智能优化算法的特征选择方法相比,所提方法在提高软件缺陷预测模型分类性能和降低特征空间维度上均取得了有效的结果。与改进樽海鞘群算法(ISSA)相比,所提方法的分类精度平均提高了约1.60%,特征子集规模平均降低了约63.79%。实验结果表明,所提方法可以选出分类精度较高且数量较少的特征子集。
展开更多
关键词
特征选择
软件缺陷预测
粒子群优化算法
正余弦算法
Q学习
在线阅读
下载PDF
职称材料
题名
一种改进的组合SOFM-SVR股票价格预测模型
被引量:
5
1
作者
片坤
徐晓钟
张益铭
机构
上海师范大学信息与机电学院
上海海德众业技术创新工程有限公司
出处
《计算机应用与软件》
CSCD
2010年第5期172-175,178,共5页
文摘
股票市场价格预测一直以来都被认为是金融时序预测领域的一项具有挑战性的工作。综合回归支持向量机SVR和自组织特征函数(SOFM)技术,并引入基于过滤的特征选择算法确定重要的输入变量,在SVR核函数的参数选择上采用粒子群优化算法(PSO)。SOFM算法将训练样本聚类,然后分别应用SVR来预测股票价格走势。最后应用上海A股的浦发银行日数据来做股票价格日预测,实验结果表明,经过改进的SOFM-SVR模型与之前的SOFM-SVR模型相比,在预测精度和训练时间上都有了较大的提高。
关键词
组合预测
sofm-svr
特征选择
pso
算法
Keywords
combined prediction sofm-svr feature selection particle swarm optimization(pso)
分类号
TP311.13 [自动化与计算机技术—计算机软件与理论]
在线阅读
下载PDF
职称材料
题名
基于自适应混合粒子群优化的软件缺陷预测特征选择方法
被引量:
4
2
作者
于振华
刘争气
刘颖
郭城
机构
西安科技大学计算机科学与技术学院
复杂系统仿真总体重点实验室
西安应用光学研究所
出处
《计算机应用》
CSCD
北大核心
2023年第4期1206-1213,共8页
基金
国家自然科学基金资助项目(61873277)。
文摘
特征选择是软件缺陷预测中数据预处理的关键步骤。针对现有特征选择方法存在的降维效果不显著、选取的最优特征子集分类精度低等问题,提出了一种基于自适应混合粒子群优化(SHPSO)的软件缺陷预测特征选择方法。首先,结合种群划分设计了基于Q学习的自适应权重更新策略,其中引入Q学习根据粒子的状态自适应地调整惯性权重;其次,为了平衡算法前期的全局搜索能力和后期的收敛速度,提出了基于曲线自适应的时变学习因子;最后,采用混合位置更新策略帮助粒子尽快跳出局部最优解,并增加粒子的多样性。在12个公开软件缺陷数据集上进行实验验证的结果表明,与使用全部特征的方法、常用的传统特征选择方法及主流的基于智能优化算法的特征选择方法相比,所提方法在提高软件缺陷预测模型分类性能和降低特征空间维度上均取得了有效的结果。与改进樽海鞘群算法(ISSA)相比,所提方法的分类精度平均提高了约1.60%,特征子集规模平均降低了约63.79%。实验结果表明,所提方法可以选出分类精度较高且数量较少的特征子集。
关键词
特征选择
软件缺陷预测
粒子群优化算法
正余弦算法
Q学习
Keywords
feature
selection
software defect
prediction
particle
swarm
optimization
(
pso
)algorithm
Sine Cosine Algorithm(SCA)
Q-learning
分类号
TP311.5 [自动化与计算机技术—计算机软件与理论]
在线阅读
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
一种改进的组合SOFM-SVR股票价格预测模型
片坤
徐晓钟
张益铭
《计算机应用与软件》
CSCD
2010
5
在线阅读
下载PDF
职称材料
2
基于自适应混合粒子群优化的软件缺陷预测特征选择方法
于振华
刘争气
刘颖
郭城
《计算机应用》
CSCD
北大核心
2023
4
在线阅读
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部