期刊文献+
共找到11篇文章
< 1 >
每页显示 20 50 100
基于CSSA-BPNN模型的胶结充填体动态抗压强度预测 被引量:3
1
作者 王小林 梅佳伟 +3 位作者 郭进平 卢才武 王颂 李泽峰 《有色金属工程》 CAS 北大核心 2024年第2期92-101,共10页
充填采矿法二步骤回采时胶结充填体稳定性受爆破扰动而降低。为快速准确地获得充填体动态抗压强度,利用分离式霍普金森压杆(SHPB)进行了40组不同应变率的单轴冲击实验,以灰砂比、充填体密度、养护龄期和平均应变率作为输入参数,充填体... 充填采矿法二步骤回采时胶结充填体稳定性受爆破扰动而降低。为快速准确地获得充填体动态抗压强度,利用分离式霍普金森压杆(SHPB)进行了40组不同应变率的单轴冲击实验,以灰砂比、充填体密度、养护龄期和平均应变率作为输入参数,充填体动态抗压强度作为输出参数,建立了一种基于Logistic混沌麻雀搜索算法(CSSA)优化BP神经网络(BPNN)的预测模型,并与传统BPNN和麻雀搜索算法优化的BPNN进行了对比分析。结果表明:CSSA-BPNN模型的平均相对误差为4.11%,预测值与实测值之间拟合的相关系数均在0.96以上,模型预测精度高。CSSA-BPNN模型的均方根误差为0.395 0 MPa,平均绝对误差为0.359 2 MPa,决定系数为0.995 2,均优于另外两种预测模型。实现了对充填体动态抗压强度的准确预测,可大幅减小物理实验量,为矿山胶结充填体的强度设计提供了一种新方法。 展开更多
关键词 混沌麻雀搜索算法(cssa) BP神经网络(BPNN) 胶结充填体 分离式霍普金森压杆(SHPB) 动态抗压强度
在线阅读 下载PDF
基于麻雀搜寻优化算法的代理购电用户用电量多维度协同校核 被引量:1
2
作者 周颖 乔婧 +4 位作者 陈宋宋 赵伟博 丁一 武亚杰 田宇 《电网技术》 北大核心 2025年第2期604-612,I0064-I0067,共13页
随着代理购电业务稳步推进,用电量预测在智能电网运行中发挥着至关重要的作用。现阶段研究大多侧重于通过算法来提高预测结果的准确度和可靠性,而这些方法缺乏对电力系统多维因素的全面考量和精确校核。因此,多维度且全面地对代理购电... 随着代理购电业务稳步推进,用电量预测在智能电网运行中发挥着至关重要的作用。现阶段研究大多侧重于通过算法来提高预测结果的准确度和可靠性,而这些方法缺乏对电力系统多维因素的全面考量和精确校核。因此,多维度且全面地对代理购电用户用电量进行预测是代理购电业务中面临的问题之一。对此,该文提出了计及多维度协同的用户用电量预测结果校核方法。首先,该文采用了偏差概率分布模型分析各个维度(区域、行业、电压等级)的有效偏差分布,进行各维度有效偏差识别;其次,以误差最小为目标采用改进麻雀搜索算法(improved sparrow search algorithm,ISSA)优化算法进行多维度权重优化配比,构建预测值和权重值组合加权的多维度协同校核模型;最后选取误差指标对多维度校核后的预测值进行误差指标评估。结合某省的代理购电用户用电量对上述算法进行了验证,结果表明,基于ISSA优化算法的多维度协同校核方法在平均绝对误差指标下较行业维度、区域维度及电压等级维度分别降低了51.9%、23.4%和19.1%,均方根误差指标下较行业维度、区域维度及电压等级维度分别降低了40.0%、15.0%和8.6%,具有良好的泛化性。 展开更多
关键词 代理购电 误差校核 ISSA优化算法 组合权重 均方根误差
在线阅读 下载PDF
北方农牧交错带干旱高精度估算模型构建
3
作者 刘洪伟 李鹏程 +1 位作者 张敏 孙燕飞 《节水灌溉》 北大核心 2025年第2期53-61,共9页
为构建区域干旱的高精度简化估算模型,以中国北方农牧交错带为研究区域,选择该区域12个气象站点,计算不同站点3个月、6个月、12个月的标准化降雨蒸散指数(SPEI-3、SPEI-6、SPEI-12),以表征区域干旱,使用时间卷积神经网络模型(TCN)来提... 为构建区域干旱的高精度简化估算模型,以中国北方农牧交错带为研究区域,选择该区域12个气象站点,计算不同站点3个月、6个月、12个月的标准化降雨蒸散指数(SPEI-3、SPEI-6、SPEI-12),以表征区域干旱,使用时间卷积神经网络模型(TCN)来提取序列数据的特征,同时输入到双向长短期记忆神经网络模型(BiLSTM)中进行进一步的处理,构建组合模型(BT),采用麻雀搜索算法(SSA)和Attention机制对组合模型进行优化,构建SSA-BiLSTM-TCN-Attention模型(SBTA),同时计算了SBTA模型精度,基于均方误差(MSE)、决定系数(R^(2))和效率系数(E_(NS))以及GPI指数的模型精度评价体系进行精度验证,结果表明:SBTA模型MSE值仅为0.041~0.200,R^(2)和E_(NS)在全区取值均在0.9以上,在全区的误差最低、一致性最高,在所有模型中精度排名第1,可推荐SBTA模型用于北方农牧交错带干旱估算当中。 展开更多
关键词 干旱估算模型 北方农牧交错带 标准化降雨蒸散指数 组合模型 麻雀搜索算法 Attention机制
在线阅读 下载PDF
基于ICEEMDAN-ICSSA-CKELM-TCCA的短期风电功率预测研究 被引量:3
4
作者 韦权 汤占军 贺建峰 《现代电子技术》 2023年第24期39-46,共8页
为了提高风电功率预测的准确性,基于信号分解、优化算法和误差修正,提出一种ICEEMDAN-ICSSA-CKELMTCCA的风电功率预测组合模型。首先采用改进的带自适应噪声的完全集成经验模式分解(ICEEMDAN)和样本熵原理,对原始功率序列进行分解和重构... 为了提高风电功率预测的准确性,基于信号分解、优化算法和误差修正,提出一种ICEEMDAN-ICSSA-CKELMTCCA的风电功率预测组合模型。首先采用改进的带自适应噪声的完全集成经验模式分解(ICEEMDAN)和样本熵原理,对原始功率序列进行分解和重构,得到更适合提取特征的新序列。然后,建立包含Poly核函数、RBF核函数的组合核极限学习机(CKELM)对新的序列进行初步预测,并利用融合了Tent混沌映射、动态惯性权重和自适应t变异策略的改进混沌麻雀搜索算法(ICSSA)对其参数进行优化,提升CKELM预测性能。最后将时间卷积网络(TCN)与高效通道注意力机制(ECA)组合搭建为TCCA模型,对初步预测结果进行修正。以中国云南省某风电场的数据为例进行多组实验,结果表明该模型针对风电功率具有较高的预测精度。 展开更多
关键词 短期风电功率预测 自适应噪声的完全集成经验模式分解 混沌麻雀搜索算法 组合核极限学习机 样本熵 时间卷积网络
在线阅读 下载PDF
矿井突水水源识别的主成分分析-混沌麻雀搜索-RF模型 被引量:8
5
作者 黄敏 毛岸 +2 位作者 路世昌 王彦彬 邵良杉 《安全与环境学报》 CAS CSCD 北大核心 2023年第8期2607-2614,共8页
为快速、准确地识别矿井突水水源,根据矿井不同含水层水化学成分的差异性,将Na^(+)+K^(+)、Ca^(2+)、Mg^(2+)、Cl^(-)、SO_(4)^(2-)、HCO_(3)^(-)及总硬度作为判别指标。利用主成分分析(Principal Component Analysis,PCA)对数据进行降... 为快速、准确地识别矿井突水水源,根据矿井不同含水层水化学成分的差异性,将Na^(+)+K^(+)、Ca^(2+)、Mg^(2+)、Cl^(-)、SO_(4)^(2-)、HCO_(3)^(-)及总硬度作为判别指标。利用主成分分析(Principal Component Analysis,PCA)对数据进行降维,并通过混沌麻雀搜索算法(Chaotic Sparrow Search Algorithm,CSSA)对随机森林(Random Forest,RF)模型中树深和树数目参数进行寻优,建立了基于PCA-CSSA-RF的矿井突水水源识别模型。选取新庄孜矿实测的45组样本数据进行预测分析,33组数据用于模型训练,12组数据用于识别测试,并将结果与其他模型识别结果进行对比。研究表明,利用PCA对数据进行降维可以减少原始数据中的冗余,利用CSSA优化的RF模型可提高全局搜索能力和预测能力,用该模型可提高突水水源识别的效率和准确率。 展开更多
关键词 安全工程 矿井突水 水源识别 主成分分析 混沌麻雀搜索 随机森林
在线阅读 下载PDF
基于SSA-BiLSTM非线性组合方法的光伏功率预测 被引量:6
6
作者 袁建华 蒋文军 +2 位作者 李洪强 徐杰 高延玲 《电子测量技术》 北大核心 2023年第21期63-71,共9页
采用多种模型进行线性组合来对光伏功率预测,能有效避免收敛性差、可靠性低等缺点。线性组合模型中,将单一模型之间简为线性关系能简化组合模型计算,但会使预测精度降低。针对此问题,提出一种基于麻雀搜索算法(SSA)优化双向长短期记忆网... 采用多种模型进行线性组合来对光伏功率预测,能有效避免收敛性差、可靠性低等缺点。线性组合模型中,将单一模型之间简为线性关系能简化组合模型计算,但会使预测精度降低。针对此问题,提出一种基于麻雀搜索算法(SSA)优化双向长短期记忆网络(BiLSTM)非线性组合方法的预测模型。首先,利用基于核改进的模糊C均值聚类算法(KFCM)和变分模态分解(VMD)对原始数据样本进行预处理;然后,采用Elman和SSA-BiLSTM对经过预处理后的光伏功率进行建模预测;最后,通过麻雀搜索算法优化双向长短期记忆网络对两个单一模型进行非线性组合,建立短期光伏功率非线性组合模型。通过某个光伏电站实测数据建立对比算例,结果表明所提组合模型在不同天气下的RMSE和MAE平均值分别为0.689 kW和0.540 kW,均优于其他对比模型,验证了所提组合模型的有效性和优越性。 展开更多
关键词 光伏功率预测 非线性组合方法 麻雀搜索算法 BiLSTM网络
在线阅读 下载PDF
改进VMD和LSTM的联合收割机装配质量检测方法 被引量:4
7
作者 轩梦辉 赵思夏 +2 位作者 徐立友 陈小亮 李团飞 《中国农机化学报》 北大核心 2023年第3期132-140,共9页
针对联合收割机装配精度不高和装配质量难以检测的问题,提出一种基于麻雀搜索算法(SSA)优化变分模态分解(VMD)和长短时记忆神经网络(LSTM)的联合收割机装配质量检测方法。该方法首先利用SSA算法自适应寻优得到最优VMD分解模态参数K和惩... 针对联合收割机装配精度不高和装配质量难以检测的问题,提出一种基于麻雀搜索算法(SSA)优化变分模态分解(VMD)和长短时记忆神经网络(LSTM)的联合收割机装配质量检测方法。该方法首先利用SSA算法自适应寻优得到最优VMD分解模态参数K和惩罚因子α,然后利用最佳参数组合[K,α]将联合收割机振动信号分解成不同中心频率的本征模态分量IMF,并对各个IMF分别进行联合特征提取组成特征向量,最后将联合特征向量作为LSTM的输入,实现不同故障特征的分类。分析结果表明,SSA-VMD-联合特征提取方法分类准确率为98.1%,分别比集合经验模态分解(EEMD)和固定参数VMD高7.1%和6.1%,验证所提方法对联合收割机装配质量检测的优越性。 展开更多
关键词 联合收割机 装配质量检测 联合特征提取 麻雀搜索算法 变分模态分解 深度学习
在线阅读 下载PDF
基于SSA-LSTM模型的短期电力负荷预测 被引量:35
8
作者 赵婧宇 池越 周亚同 《电工电能新技术》 CSCD 北大核心 2022年第6期71-79,共9页
电力负荷预测实质是时间序列预测问题,存在非平稳性和影响因素的复杂性。为了提高预测精度,解决长短期记忆神经网络(LSTM)参数选取随机性大、选取困难的问题,本文提出了一种利用麻雀搜索算法(SSA)优化长短期记忆神经网络参数的短期电力... 电力负荷预测实质是时间序列预测问题,存在非平稳性和影响因素的复杂性。为了提高预测精度,解决长短期记忆神经网络(LSTM)参数选取随机性大、选取困难的问题,本文提出了一种利用麻雀搜索算法(SSA)优化长短期记忆神经网络参数的短期电力负荷预测模型(SSA-LSTM),通过历史用电负荷数据、相关影响因素数据对待预测日进行负荷预测。首先,对历史用电负荷数据、天气、节假日等影响因素进行预处理。其次,将处理好的数据用以训练模型,借助麻雀搜索算法对长短期记忆神经网络的参数进行寻优,使输入数据与网络结构更好地进行匹配。最后,进行负荷预测同时对比其他算法模型进行分析。算例结果表明,本文所提模型能够有效提高预测精度且在进行短期负荷预测中具有有效性。 展开更多
关键词 麻雀搜索算法(SSA) 长短期记忆神经网络(LSTM) 组合预测 预测精度
在线阅读 下载PDF
基于SSA-VMD-LSTM-NKDE的短期风电功率概率预测 被引量:10
9
作者 高晓芝 郭旺 +2 位作者 郭英军 宋静冉 孙鹤旭 《河北科技大学学报》 CAS 北大核心 2023年第4期323-334,共12页
为进一步提高风电功率预测精度,提出一种基于麻雀搜索算法(SSA)优化VMD参数的组合预测方法。首先,使用麻雀搜索算法对VMD参数进行优化,并利用优化后的VMD对数据进行分解;其次,结合灰色关联分析法和熵权法对环境变量进行相关性分析,选择... 为进一步提高风电功率预测精度,提出一种基于麻雀搜索算法(SSA)优化VMD参数的组合预测方法。首先,使用麻雀搜索算法对VMD参数进行优化,并利用优化后的VMD对数据进行分解;其次,结合灰色关联分析法和熵权法对环境变量进行相关性分析,选择相关性最高的影响因素与分解得到的各模态分量组合作为LSTM预测模型的输入,获得更为精确的预测结果;最后,建立基于非参数核密度估计(NKDE)的风电功率概率预测模型,实现对风电功率预测结果不确定性的有效量化。结果表明,所提组合模型的MAE,RMSE和MAPE比VMD-LSTM模型的分别下降了39.51%,33.22%和40.39%。SSA-VMD-LSTM-NKDE组合模型不仅能够有效提高确定性预测的精度,而且还能够实现对风电功率预测结果不确定性的有效量化,为风电功率预测提供了科学决策依据。 展开更多
关键词 风能 麻雀搜索算法 变分模态分解 熵权法 灰色关联分析 组合预测模型
在线阅读 下载PDF
利用ARIMA-SSA-LSTM组合模型的碳排放交易价格预测 被引量:9
10
作者 炊婉冰 吕学斌 《西安科技大学学报》 CAS 北大核心 2023年第5期1025-1034,共10页
单一的预测方法在不同方面各有优劣,为了提高碳排放交易价格预测的精确度,从智能算法出发提出ARIMA-SSA-LSTM组合碳排放交易价格预测模型。该模型通过结合非线性规划局部搜索的优势和遗传算法全局搜索的优势使用非线性规划遗传算法分配... 单一的预测方法在不同方面各有优劣,为了提高碳排放交易价格预测的精确度,从智能算法出发提出ARIMA-SSA-LSTM组合碳排放交易价格预测模型。该模型通过结合非线性规划局部搜索的优势和遗传算法全局搜索的优势使用非线性规划遗传算法分配差分整合移动平均自回归(ARIMA)模型和麻雀搜索算法优化后的长短时记忆(LSTM)模型(SSA-LSTM)的权重,通过加权得到最终的碳排放交易价格预测结果。运用ARIMA-SSA-LSTM组合模型,ARIMA模型,LSTM模型和SSA-LSTM模型分别对湖北省与广东省碳排放交易价格进行短期和长期预测。实证结果表明,相比单一的ARIMA模型、LSTM模型、SSA-LSTM模型,ARIMA-SSA-LSTM组合模型三个预测精度评价指标均为最小,碳排放交易价格预测精度最优。相比于传统ARIMA模型,机器学习LSTM模型具有更精确的预测结果,并且趋势预测更优。引入智能算法后,权重分配结果更加准确,LSTM模型的预测性能得到提升,印证了智能算法在碳排放交易价格预测领域的有效性。 展开更多
关键词 应用统计 碳排放交易价格预测 加权组合 非线性规划遗传算法 麻雀算法 LSTM模型 ARIMA模型
在线阅读 下载PDF
基于改进1D-CNN的轨道交通配电网馈线系统故障诊断模型研究
11
作者 赵晓震 顾湘龙 +3 位作者 苏醒 周全 李奎 宋金川 《中国铁道科学》 2025年第5期193-202,共10页
针对轨道交通馈线系统中继电保护装置动作故障诊断耗时长且依赖专家经验的现状,提出1种基于生成对抗网络增强的合成少数类过采样技术(SMOTE-GAN)和组合麻雀搜索算法(CSSA)优化的一维卷积神经网络(1D-CNN)故障诊断模型SG-CSSA-1D-CNN。首... 针对轨道交通馈线系统中继电保护装置动作故障诊断耗时长且依赖专家经验的现状,提出1种基于生成对抗网络增强的合成少数类过采样技术(SMOTE-GAN)和组合麻雀搜索算法(CSSA)优化的一维卷积神经网络(1D-CNN)故障诊断模型SG-CSSA-1D-CNN。首先,通过SMOTE生成局部理想的少数类样本作为生成对抗网络(GAN)生成器的输入,融合SMOTE的局部插值优势与GAN的全局分布学习能力,解决原始样本不足及生成样本质量不高的问题;其次,采用引入Tent混沌序列和高斯变异机制的CSSA算法提升全局寻优效率,实现1D-CNN最优超参数的自动搜索,优化模型分类性能;最后,基于包含18个电气特征的9类故障实际数据集,构建故障诊断模型。结果表明:与原始1D-CNN模型相比,优化后的模型损失降低12.5%,其诊断准确率提升至98.46%,9类故障分类精度达到均衡。该方法可有效解决类别不平衡数据下的故障识别难题,并显著提升继电保护装置动作故障的识别可靠性。 展开更多
关键词 轨道交通 馈线系统故障诊断 SMOTE-GAN融合算法 组合麻雀优化算法 一维卷积神经网络
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部