期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Joint Task Allocation and Resource Optimization for Blockchain Enabled Collaborative Edge Computing 被引量:1
1
作者 Xu Wenjing Wang Wei +2 位作者 Li Zuguang Wu Qihui Wang Xianbin 《China Communications》 SCIE CSCD 2024年第4期218-229,共12页
Collaborative edge computing is a promising direction to handle the computation intensive tasks in B5G wireless networks.However,edge computing servers(ECSs)from different operators may not trust each other,and thus t... Collaborative edge computing is a promising direction to handle the computation intensive tasks in B5G wireless networks.However,edge computing servers(ECSs)from different operators may not trust each other,and thus the incentives for collaboration cannot be guaranteed.In this paper,we propose a consortium blockchain enabled collaborative edge computing framework,where users can offload computing tasks to ECSs from different operators.To minimize the total delay of users,we formulate a joint task offloading and resource optimization problem,under the constraint of the computing capability of each ECS.We apply the Tammer decomposition method and heuristic optimization algorithms to obtain the optimal solution.Finally,we propose a reputation based node selection approach to facilitate the consensus process,and also consider a completion time based primary node selection to avoid monopolization of certain edge node and enhance the security of the blockchain.Simulation results validate the effectiveness of the proposed algorithm,and the total delay can be reduced by up to 40%compared with the non-cooperative case. 展开更多
关键词 blockchain collaborative edge computing resource optimization task allocation
在线阅读 下载PDF
Intelligent Task Offloading and Collaborative Computation in Multi-UAV-Enabled Mobile Edge Computing 被引量:6
2
作者 Jingming Xia Peng Wang +1 位作者 Bin Li Zesong Fei 《China Communications》 SCIE CSCD 2022年第4期244-256,共13页
This article establishes a three-tier mobile edge computing(MEC) network, which takes into account the cooperation between unmanned aerial vehicles(UAVs). In this MEC network, we aim to minimize the processing delay o... This article establishes a three-tier mobile edge computing(MEC) network, which takes into account the cooperation between unmanned aerial vehicles(UAVs). In this MEC network, we aim to minimize the processing delay of tasks by jointly optimizing the deployment of UAVs and offloading decisions,while meeting the computing capacity constraint of UAVs. However, the resulting optimization problem is nonconvex, which cannot be solved by general optimization tools in an effective and efficient way. To this end, we propose a two-layer optimization algorithm to tackle the non-convexity of the problem by capitalizing on alternating optimization. In the upper level algorithm, we rely on differential evolution(DE) learning algorithm to solve the deployment of the UAVs. In the lower level algorithm, we exploit distributed deep neural network(DDNN) to generate offloading decisions. Numerical results demonstrate that the two-layer optimization algorithm can effectively obtain the near-optimal deployment of UAVs and offloading strategy with low complexity. 展开更多
关键词 mobile edge computing MULTI-UAV collaborative cloud and edge computing deep neural network differential evolution
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部