期刊文献+
共找到7篇文章
< 1 >
每页显示 20 50 100
多层AR-LBP与WLD特征融合的SA-CRC人脸识别 被引量:1
1
作者 叶枫 叶学义 +1 位作者 罗宵晗 陈泽 《计算机工程与应用》 CSCD 北大核心 2019年第14期134-141,共8页
针对非对称局部二值模式(AR-LBP)提取的人脸特征有限,以及协同表示分类(CRC)人脸存在的类间干扰,提出以多层AR-LBP特征及联合韦伯局部描述子(WLD)特征进行补充,并以增加CRC中稀疏性来降低类间干扰。提取人脸图像的多层AR-LBP特征并级联... 针对非对称局部二值模式(AR-LBP)提取的人脸特征有限,以及协同表示分类(CRC)人脸存在的类间干扰,提出以多层AR-LBP特征及联合韦伯局部描述子(WLD)特征进行补充,并以增加CRC中稀疏性来降低类间干扰。提取人脸图像的多层AR-LBP特征并级联,与从原图像提取的WLD特征级联得到多层AR-LBP与WLD融合特征,采用稀疏增强的协同表示分类(SA-CRC)完成人脸分类。在ORL、Yale和GT公开人脸库上,提出的多层AR-LBP与WLD特征融合算法与AR-LBP特征提取算法、WLD特征提取算法以及多层LBP与HOG特征融合算法相比,识别正确率提高了0.7%~42.6%;当利用SA-CRC取代CRC后,识别正确率进一步得到提高。 展开更多
关键词 非对称局部二值模式(AR-LBP) 韦伯局部描述子(WLD) 协同表示分类(crc) 稀疏增强的协同表示分类(SA-crc) 特征提取
在线阅读 下载PDF
基于改进分数阶SVD的块协作表示的小样本人脸识别算法 被引量:4
2
作者 张建明 廖婷婷 +1 位作者 吴宏林 刘宇凯 《计算机工程与科学》 CSCD 北大核心 2018年第7期1237-1243,共7页
随着训练样本数目减少,传统人脸识别方法的性能会急剧下降,因此提出了改进的分数阶SVD(IFSVDR)的块协作表示算法,以提高小样本下人脸识别率。为了减少噪声对分类的干扰,对SVD算法进行改进,利用分数阶增大主要正交基权值,提高特征的判别... 随着训练样本数目减少,传统人脸识别方法的性能会急剧下降,因此提出了改进的分数阶SVD(IFSVDR)的块协作表示算法,以提高小样本下人脸识别率。为了减少噪声对分类的干扰,对SVD算法进行改进,利用分数阶增大主要正交基权值,提高特征的判别力;对相对较小权值进行抑制,降低噪声的干扰。然后,将得到的特征图像用基于块的协作表示算法进行分类(PCRC)。相对传统稀疏分类算法,PCRC融合了集成学习,能更好地解决小样本问题,且CRC计算复杂度低于SRC。在扩展的Yale B和AR人脸数据库上的实验表明,本文提出的算法在单样本的情况下也有较高的识别率。 展开更多
关键词 人脸识别 改进的分数阶奇异值分解 基于块的协作表示分类 小样本问题
在线阅读 下载PDF
加权融合核稀疏和协同表示的高光谱影像分类 被引量:4
3
作者 侯良国 向泽君 楚恒 《计算机工程与设计》 北大核心 2019年第4期1058-1063,共6页
为进一步提高表示分类器中基原子对测试样本的表达能力,提出一种加权融合核稀疏和协同表示的高光谱影像分类算法(WKSCRC)。充分利用核函数处理非线性数据的优势,将高光谱影像数据映射到高维核特征空间;对核稀疏表示系数和核协同表示系... 为进一步提高表示分类器中基原子对测试样本的表达能力,提出一种加权融合核稀疏和协同表示的高光谱影像分类算法(WKSCRC)。充分利用核函数处理非线性数据的优势,将高光谱影像数据映射到高维核特征空间;对核稀疏表示系数和核协同表示系数进行加权融合,在核融合表示系数下重构分类测试样本。在ROSIS和AVIRIS两个数据集上的仿真结果表明,该算法在精度与稳定性上优于其它传统分类算法。 展开更多
关键词 高光谱分类 稀疏表示 协同表示 核技巧 加权融合
在线阅读 下载PDF
基于主元分析和线性判别分析降维的稀疏表示分类 被引量:3
4
作者 那天 宋晓宁 於东军 《南京理工大学学报》 EI CAS CSCD 北大核心 2018年第3期286-291,共6页
为解决传统的稀疏表示分类(SRC)算法在小样本人脸识别过程中的过大时间开销问题,该文提出2种基于降维的SRC算法。扩展主元分析(EPCA)算法利用PCA算法构造约束优化稀疏模型,对测试样本进行线性表示,通过比较测试样本和每类训练样本的重构... 为解决传统的稀疏表示分类(SRC)算法在小样本人脸识别过程中的过大时间开销问题,该文提出2种基于降维的SRC算法。扩展主元分析(EPCA)算法利用PCA算法构造约束优化稀疏模型,对测试样本进行线性表示,通过比较测试样本和每类训练样本的重构PCA系数进行决策分类。EPCA+线性判别分析(EPCA+LDA)算法在EPCA算法的基础上增加LDA约束模型,提高重构样本的稀疏表示的鉴别性。将该文算法应用于AR和FERET人脸数据库,与扩展SRC(ESRC)、SRC、SRC_PCA、协同表达分类(CRC)算法相比,该文算法有较高的识别率和较低的时间复杂度。将EPCA算法和EPCA+LDA算法应用于FETET数据集,识别率分别为61.46%和59.17%,运行时间分别为383.02 s和220.62 s。 展开更多
关键词 主元分析 线性判别分析 降维 稀疏表示分类 人脸识别 协同表达分类
在线阅读 下载PDF
基于测试样本误差重构的协同表示分类方法 被引量:4
5
作者 王俊茜 郑文先 徐勇 《计算机科学》 CSCD 北大核心 2020年第6期104-113,共10页
基于协同表示的分类方法(Collaborative Representation-based Classification,CRC)在诸如人脸识别、物体识别等图像分类任务中取得了良好的效果。CRC利用范数正则化来解决测试样本的线性表示问题,以期得到一个较稳定的数值解。已有研... 基于协同表示的分类方法(Collaborative Representation-based Classification,CRC)在诸如人脸识别、物体识别等图像分类任务中取得了良好的效果。CRC利用范数正则化来解决测试样本的线性表示问题,以期得到一个较稳定的数值解。已有研究表明,正则化参数的选择对协同表示的数值稳定性起着非常重要的作用。文中提出了一种新的基于测试样本误差重构的协同表示分类方法(Test Sample Error Reconstruction Collaborative Representation-based Classification,TSER-CRC)。该方法首先利用较小的正则化参数计算出一个协同表示系数,使其重新构建测试样本,以削弱原始测试样本中的误差或减小原始测试样本与训练样本之间的不一致性;然后,利用较大的正则化参数,并基于重构出的测试样本再次求解协同表示系数,以得出数值较稳定的测试样本与各类别训练样本之间的关系,并以此对测试样本进行分类。该方法有效地减少了由所有训练样本构成的协同子空间所表示的测试样本中存在的误差和异常值,提高了协同表示编码系数的稳定性和图像分类的鲁棒性。通过在5个标准数据集上的实验结果表明,所提方法在图像分类精度方面明显优于传统CRC和其他一些经典的图像分类方法。 展开更多
关键词 图像分类 模式识别 表示分类 协同表示 误差重构
在线阅读 下载PDF
基于分块二维局部保持鉴别分析的二级人脸识别方法
6
作者 赵春晖 陈才扣 《计算机应用》 CSCD 北大核心 2015年第A02期254-257,共4页
在对二维局部保持鉴别分析(2DLPDA)研究的过程中,发现在将样本分块后,对相同位置的块组成的新的样本集独自使用2DLPDA方法,可以有效地将测试样本的类别锁定在一个很小的范围内。由此提出一种基于分块二维局部保持鉴别分析的二级人脸识... 在对二维局部保持鉴别分析(2DLPDA)研究的过程中,发现在将样本分块后,对相同位置的块组成的新的样本集独自使用2DLPDA方法,可以有效地将测试样本的类别锁定在一个很小的范围内。由此提出一种基于分块二维局部保持鉴别分析的二级人脸识别方法。在第一阶段首先对样本进行分块,然后独立对相同位置块所组成的新样本集进行2DLPDA,并以此提取出测试样本被锁定的类别范围;之后在该缩小的类别范围内,进行二级人脸识别过程。提出两种方案,一种是二级采用协同表示分类(CRC)算法,另一种是二级采用最近邻分类(NNC)算法来对测试样本的类别进行进一步的识别。在ORL人脸库上的实验结果表明,所提出的方法对于提高识别率有效。 展开更多
关键词 局部保持鉴别分析 协同表示分类 最近邻分类 二级人脸识别
在线阅读 下载PDF
基于k-最小表示误差类的表示分类方法
7
作者 罗智玉 郑成勇 《计算机应用研究》 CSCD 北大核心 2021年第10期3035-3039,共5页
基于表示的分类(representation-based classification,RC)通常使用所有类的训练样本来表示测试样本。然而,是否需要使用全部类来表示测试样本仍有待研究。为此,提出一种两阶段表示分类框架。首先使用RC算法计算测试样本相对于全部类的... 基于表示的分类(representation-based classification,RC)通常使用所有类的训练样本来表示测试样本。然而,是否需要使用全部类来表示测试样本仍有待研究。为此,提出一种两阶段表示分类框架。首先使用RC算法计算测试样本相对于全部类的训练样本的表示系数,找出前k(k≥1)个具有最小表示误差的类;然后利用该k个类的训练样本,再次应用RC算法对测试样本进行表示,并通过从这k个类中找出最小表示误差类来确定测试样本的类别。此外,提出了一种非负加权协同表示分类算法。所提分类框架中的前后两个RC算法可以相同也可以不同。取前后两个RC相同,对五种RC,在五个数据库上进行实验,实验结果表明,所提两阶段表示分类框架大多数情况下能显著提升原RC算法的分类精度。 展开更多
关键词 基于表示的分类 k-最小表示误差类 两阶段 非负加权 协同表示
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部