The satellite-based automatic identification system (AIS) receiver has to encounter the frequency offset caused by the Doppler effect and the oscillator instability. This paper proposes a non-coherent sequence detecti...The satellite-based automatic identification system (AIS) receiver has to encounter the frequency offset caused by the Doppler effect and the oscillator instability. This paper proposes a non-coherent sequence detection scheme for the satellite-based AIS signal transmitted over the white Gaussian noise channel. Based on the maximum likelihood estimation and a Viterbi decoder, the proposed scheme is capable of tolerating a frequency offset up to 5% of the symbol rate. The complexity of the proposed scheme is reduced by the state-complexity reduction, which is based on per-survivor processing. Simulation results prove that the proposed non-coherent sequence detection scheme has high robustness to frequency offset compared to the relative scheme when messages collision exists.展开更多
The detection of hypersonic targets usually confronts range migration(RM)issue before coherent integration(CI).The traditional methods aiming at correcting RM to obtain CI mainly considers the narrow-band radar condit...The detection of hypersonic targets usually confronts range migration(RM)issue before coherent integration(CI).The traditional methods aiming at correcting RM to obtain CI mainly considers the narrow-band radar condition.However,with the increasing requirement of far-range detection,the time bandwidth product,which is corresponding to radar’s mean power,should be promoted in actual application.Thus,the echo signal generates the scale effect(SE)at large time bandwidth product situation,influencing the intra and inter pulse integration performance.To eliminate SE and correct RM,this paper proposes an effective algorithm,i.e.,scaled location rotation transform(ScLRT).The ScLRT can remove SE to obtain the matching pulse compression(PC)as well as correct RM to complete CI via the location rotation transform,being implemented by seeking the actual rotation angle.Compared to the traditional coherent detection algorithms,Sc LRT can address the SE problem to achieve better detection/estimation capabilities.At last,this paper gives several simulations to assess the viability of ScLRT.展开更多
The traversal search of multi-dimensional parameter during the process of hypersonic target echo signal coherent integration,leads to the problem of large amounts of calculation and poor real-time performance.In view ...The traversal search of multi-dimensional parameter during the process of hypersonic target echo signal coherent integration,leads to the problem of large amounts of calculation and poor real-time performance.In view of these problems,a modified polynomial Radon-polynomial Fourier transform(MPRPFT)hypersonic target coherent integration detection algorithm based on Doppler feedback is proposed in this paper.Firstly,the Doppler estimation value of the target is obtained by using the target point information obtained by subsequent non-coherent integration detection.Then,the feedback adjustment of the coherent integration process is performed by using the acquired target Doppler estimation value.Finally,the coherent integration is completed after adjusting the search interval of compensation.The simulation results show that the algorithm can effectively reduce the computational complexity and improve the real-time performance on the basis of the effective coherent integration of hypersonic target echo signals.展开更多
Coherent change detection(CCD) is an effective method to detect subtle scene changes that occur between temporal synthetic aperture radar(SAR) observations. Most coherence estimators are obtained from a Hermitian prod...Coherent change detection(CCD) is an effective method to detect subtle scene changes that occur between temporal synthetic aperture radar(SAR) observations. Most coherence estimators are obtained from a Hermitian product based on local statistics. Increasing the number of samples in the local window can improve the estimation bias, but cause the loss of the estimated images spatial resolution. The limitations of these estimators lead to unclear contour of the disturbed region, and even the omission of fine change targets. In this paper, a CCD approach is proposed to detect fine scene changes from multi-temporal and multi-angle SAR image pairs. Multi-angle CCD estimator can improve the contrast between the change target and the background clutter by jointly accumulating singleangle alternative estimator results without further loss of image resolution. The sensitivity of detection performance to image quantity and angle interval is analyzed. Theoretical analysis and experimental results verify the performance of the proposed algorithm.展开更多
Constrained by complex imaging mechanism and extraordinary visual appearance,change detection with synthetic aperture radar(SAR)images has been a difficult research topic,especially in urban areas.Although existing st...Constrained by complex imaging mechanism and extraordinary visual appearance,change detection with synthetic aperture radar(SAR)images has been a difficult research topic,especially in urban areas.Although existing studies have extended from bi-temporal data pair to multi-temporal datasets to derive more plentiful information,there are still two problems to be solved in practical applications.First,change indicators constructed from incoherent feature only cannot characterize the change objects accurately.Second,the results of pixel-level methods are usually presented in the form of the noisy binary map,making the spatial change not intuitive and the temporal change of a single pixel meaningless.In this study,we propose an unsupervised man-made objects change detection framework using both coherent and incoherent features derived from multi-temporal SAR images.The coefficients of variation in timeseries incoherent features and the man-made object index(MOI)defined with coherent features are first combined to identify the initial change pixels.Afterwards,an improved spatiotemporal clustering algorithm is developed based on density-based spatial clustering of applications with noise(DBSCAN)and dynamic time warping(DTW),which can transform the initial results into noiseless object-level patches,and take the cluster center as a representative of the man-made object to determine the change pattern of each patch.An experiment with a stack of 10 TerraSAR-X images in Stripmap mode demonstrated that this method is effective in urban scenes and has the potential applicability to wide area change detection.展开更多
Synthetic aperture radar(SAR) is able to detect surface changes in urban areas with a short revisit time, showing its capability in disaster assessment and urbanization monitoring.Most presented change detection metho...Synthetic aperture radar(SAR) is able to detect surface changes in urban areas with a short revisit time, showing its capability in disaster assessment and urbanization monitoring.Most presented change detection methods are conducted using couples of SAR amplitude images. However, a prior date of surface change is required to select a feasible image pair. We propose an automatic spatio-temporal change detection method by identifying the temporary coherent scatterers. Based on amplitude time series, χ^(2)-test and iterative single pixel change detection are proposed to identify all step-times: the moments of the surface change. Then the parameters, e.g., deformation velocity and relative height, are estimated and corresponding coherent periods are identified by using interferometric phase time series. With identified temporary coherent scatterers, different types of temporal surface changes can be classified using the location of the coherent periods and spatial significant changes are identified combining point density and F values. The main advantage of our method is automatically detecting spatio-temporal surface changes without prior information. Experimental results by the proposed method show that both appearing and disappearing buildings with their step-times are successfully identified and results by ascending and descending SAR images show a good agreement.展开更多
The problem of adaptive detection in the situation of signal mismatch is considered; that is, the actual signal steering vector is not aligned with the nominal one. Two novel tunable detectors are proposed. They can c...The problem of adaptive detection in the situation of signal mismatch is considered; that is, the actual signal steering vector is not aligned with the nominal one. Two novel tunable detectors are proposed. They can control the degree to which the mismatched signals are rejected. Remarkably, it is found that they both cover existing famous detectors as their special cases. More importantly, they possess the constant false alarm rate(CFAR)property and achieve enhanced mismatched signal rejection or improved robustness than their natural competitors. Besides, they can provide slightly better matched signals detection performance than the existing detectors.展开更多
Long-time coherent integration(LTCI)is an effective way for radar maneuvering target detection,but it faces the problem of a large number of search parameters and large amount of calculation.Realizing the simultaneous...Long-time coherent integration(LTCI)is an effective way for radar maneuvering target detection,but it faces the problem of a large number of search parameters and large amount of calculation.Realizing the simultaneous compensation of the range and Doppler migrations in complex clutter back-ground,and at the same time improving the calculation efficiency has become an urgent problem to be solved.The sparse transformation theory is introduced to LTCI in this paper,and a non-parametric searching sparse LTCI(SLTCI)based maneuvering target detection method is proposed.This method performs time reversal(TR)and second-order Keystone transform(SKT)in the range frequency&slow-time data to complete high-order range walk compensation,and achieves the coherent integra-tion of maneuvering target across range and Doppler units via the robust sparse fractional Fourier transform(RSFRFT).It can compensate for the nonlinear range migration caused by high-order motion.S-band and X-band radar data measured in sea clutter background are used to verify the detection performance of the proposed method,which can achieve better detection performance of maneuvering targets with less computational burden compared with several popular integration methods.展开更多
文摘The satellite-based automatic identification system (AIS) receiver has to encounter the frequency offset caused by the Doppler effect and the oscillator instability. This paper proposes a non-coherent sequence detection scheme for the satellite-based AIS signal transmitted over the white Gaussian noise channel. Based on the maximum likelihood estimation and a Viterbi decoder, the proposed scheme is capable of tolerating a frequency offset up to 5% of the symbol rate. The complexity of the proposed scheme is reduced by the state-complexity reduction, which is based on per-survivor processing. Simulation results prove that the proposed non-coherent sequence detection scheme has high robustness to frequency offset compared to the relative scheme when messages collision exists.
基金supported by the National Natural Science Foundation of China(62101099)the Chinese Postdoctoral Science Foundation(2021M690558,2022T150100,2018M633352,2019T120825)+3 种基金the Young Elite Scientist Sponsorship Program(YESS20200082)the Aeronautical Science Foundation of China(2022Z017080001)the Open Foundation of Science and Technology on Electronic Information Control Laboratorythe Natural Science Foundation of Sichuan Province(2023NSFSC1386)。
文摘The detection of hypersonic targets usually confronts range migration(RM)issue before coherent integration(CI).The traditional methods aiming at correcting RM to obtain CI mainly considers the narrow-band radar condition.However,with the increasing requirement of far-range detection,the time bandwidth product,which is corresponding to radar’s mean power,should be promoted in actual application.Thus,the echo signal generates the scale effect(SE)at large time bandwidth product situation,influencing the intra and inter pulse integration performance.To eliminate SE and correct RM,this paper proposes an effective algorithm,i.e.,scaled location rotation transform(ScLRT).The ScLRT can remove SE to obtain the matching pulse compression(PC)as well as correct RM to complete CI via the location rotation transform,being implemented by seeking the actual rotation angle.Compared to the traditional coherent detection algorithms,Sc LRT can address the SE problem to achieve better detection/estimation capabilities.At last,this paper gives several simulations to assess the viability of ScLRT.
基金supported by the National Natural Science Foundation of China(6173102361701519+1 种基金61671462)the Distinguished Taishan Scholars in Climbing Plan
文摘The traversal search of multi-dimensional parameter during the process of hypersonic target echo signal coherent integration,leads to the problem of large amounts of calculation and poor real-time performance.In view of these problems,a modified polynomial Radon-polynomial Fourier transform(MPRPFT)hypersonic target coherent integration detection algorithm based on Doppler feedback is proposed in this paper.Firstly,the Doppler estimation value of the target is obtained by using the target point information obtained by subsequent non-coherent integration detection.Then,the feedback adjustment of the coherent integration process is performed by using the acquired target Doppler estimation value.Finally,the coherent integration is completed after adjusting the search interval of compensation.The simulation results show that the algorithm can effectively reduce the computational complexity and improve the real-time performance on the basis of the effective coherent integration of hypersonic target echo signals.
文摘Coherent change detection(CCD) is an effective method to detect subtle scene changes that occur between temporal synthetic aperture radar(SAR) observations. Most coherence estimators are obtained from a Hermitian product based on local statistics. Increasing the number of samples in the local window can improve the estimation bias, but cause the loss of the estimated images spatial resolution. The limitations of these estimators lead to unclear contour of the disturbed region, and even the omission of fine change targets. In this paper, a CCD approach is proposed to detect fine scene changes from multi-temporal and multi-angle SAR image pairs. Multi-angle CCD estimator can improve the contrast between the change target and the background clutter by jointly accumulating singleangle alternative estimator results without further loss of image resolution. The sensitivity of detection performance to image quantity and angle interval is analyzed. Theoretical analysis and experimental results verify the performance of the proposed algorithm.
基金supported by the National Natural Science Foundation of China(41774006)the Comparative Study of Geo-environment and Geohazards in the Yangtze River Delta and the Red River Delta Projectthe Shanghai Science and Technology Development Foundation(20dz1201200)。
文摘Constrained by complex imaging mechanism and extraordinary visual appearance,change detection with synthetic aperture radar(SAR)images has been a difficult research topic,especially in urban areas.Although existing studies have extended from bi-temporal data pair to multi-temporal datasets to derive more plentiful information,there are still two problems to be solved in practical applications.First,change indicators constructed from incoherent feature only cannot characterize the change objects accurately.Second,the results of pixel-level methods are usually presented in the form of the noisy binary map,making the spatial change not intuitive and the temporal change of a single pixel meaningless.In this study,we propose an unsupervised man-made objects change detection framework using both coherent and incoherent features derived from multi-temporal SAR images.The coefficients of variation in timeseries incoherent features and the man-made object index(MOI)defined with coherent features are first combined to identify the initial change pixels.Afterwards,an improved spatiotemporal clustering algorithm is developed based on density-based spatial clustering of applications with noise(DBSCAN)and dynamic time warping(DTW),which can transform the initial results into noiseless object-level patches,and take the cluster center as a representative of the man-made object to determine the change pattern of each patch.An experiment with a stack of 10 TerraSAR-X images in Stripmap mode demonstrated that this method is effective in urban scenes and has the potential applicability to wide area change detection.
基金supported by the National Natural Science Foundation of China (42074022)。
文摘Synthetic aperture radar(SAR) is able to detect surface changes in urban areas with a short revisit time, showing its capability in disaster assessment and urbanization monitoring.Most presented change detection methods are conducted using couples of SAR amplitude images. However, a prior date of surface change is required to select a feasible image pair. We propose an automatic spatio-temporal change detection method by identifying the temporary coherent scatterers. Based on amplitude time series, χ^(2)-test and iterative single pixel change detection are proposed to identify all step-times: the moments of the surface change. Then the parameters, e.g., deformation velocity and relative height, are estimated and corresponding coherent periods are identified by using interferometric phase time series. With identified temporary coherent scatterers, different types of temporal surface changes can be classified using the location of the coherent periods and spatial significant changes are identified combining point density and F values. The main advantage of our method is automatically detecting spatio-temporal surface changes without prior information. Experimental results by the proposed method show that both appearing and disappearing buildings with their step-times are successfully identified and results by ascending and descending SAR images show a good agreement.
基金supported by the National Natural Science Foundation of China(6110216960925005)
文摘The problem of adaptive detection in the situation of signal mismatch is considered; that is, the actual signal steering vector is not aligned with the nominal one. Two novel tunable detectors are proposed. They can control the degree to which the mismatched signals are rejected. Remarkably, it is found that they both cover existing famous detectors as their special cases. More importantly, they possess the constant false alarm rate(CFAR)property and achieve enhanced mismatched signal rejection or improved robustness than their natural competitors. Besides, they can provide slightly better matched signals detection performance than the existing detectors.
基金supported by the National Natural Science Foundation of China(62222120,61871391,U1933135)Shandong Provincial Natural Science Foundation(ZR2021YQ43).
文摘Long-time coherent integration(LTCI)is an effective way for radar maneuvering target detection,but it faces the problem of a large number of search parameters and large amount of calculation.Realizing the simultaneous compensation of the range and Doppler migrations in complex clutter back-ground,and at the same time improving the calculation efficiency has become an urgent problem to be solved.The sparse transformation theory is introduced to LTCI in this paper,and a non-parametric searching sparse LTCI(SLTCI)based maneuvering target detection method is proposed.This method performs time reversal(TR)and second-order Keystone transform(SKT)in the range frequency&slow-time data to complete high-order range walk compensation,and achieves the coherent integra-tion of maneuvering target across range and Doppler units via the robust sparse fractional Fourier transform(RSFRFT).It can compensate for the nonlinear range migration caused by high-order motion.S-band and X-band radar data measured in sea clutter background are used to verify the detection performance of the proposed method,which can achieve better detection performance of maneuvering targets with less computational burden compared with several popular integration methods.