A new Chien search method for shortened Reed-Solomon (RS) code is proposed, based on this, a versatile RS decoder for correcting both errors and erasures is designed. Compared with the traditional RS decoder, the we...A new Chien search method for shortened Reed-Solomon (RS) code is proposed, based on this, a versatile RS decoder for correcting both errors and erasures is designed. Compared with the traditional RS decoder, the weighted coefficient of the Chien search method is calculated sequentially through the three pipelined stages of the decoder. And therefore, the computation of the errata locator polynomial and errata evaluator polynomial needs to be modified. The versatile RS decoder with minimum distance 21 has been synthesized in the Xilinx Virtex-Ⅱ series field programmable gate array (FPGA) xe2v1000-5 and is used by coneatenated coding system for satellite communication. Results show that the maximum data processing rate can be up to 1.3 Gbit/s.展开更多
Csiszar's strong coding theorem for discrete memoryless scarce is generalized to arbitrarily varying source.We also determine the asymptotic error exponent for arbitrarily wrying source.
To mitigate the impact of noise and inter-ference on multi-level-cell(MLC)flash memory with the use of low-density parity-check(LDPC)codes,we propose a dynamic write-voltage design scheme con-sidering the asymmetric p...To mitigate the impact of noise and inter-ference on multi-level-cell(MLC)flash memory with the use of low-density parity-check(LDPC)codes,we propose a dynamic write-voltage design scheme con-sidering the asymmetric property of raw bit error rate(RBER),which can obtain the optimal write voltage by minimizing a cost function.In order to further improve the decoding performance of flash memory,we put forward a low-complexity entropy-based read-voltage optimization scheme,which derives the read voltages by searching for the optimal entropy value via a log-likelihood ratio(LLR)-aware cost function.Simulation results demonstrate the superiority of our proposed dynamic write-voltage design scheme and read-voltage optimization scheme with respect to the existing counterparts.展开更多
Along with the proliferating research interest in semantic communication(Sem Com),joint source channel coding(JSCC)has dominated the attention due to the widely assumed existence in efficiently delivering information ...Along with the proliferating research interest in semantic communication(Sem Com),joint source channel coding(JSCC)has dominated the attention due to the widely assumed existence in efficiently delivering information semantics.Nevertheless,this paper challenges the conventional JSCC paradigm and advocates for adopting separate source channel coding(SSCC)to enjoy a more underlying degree of freedom for optimization.We demonstrate that SSCC,after leveraging the strengths of the Large Language Model(LLM)for source coding and Error Correction Code Transformer(ECCT)complemented for channel coding,offers superior performance over JSCC.Our proposed framework also effectively highlights the compatibility challenges between Sem Com approaches and digital communication systems,particularly concerning the resource costs associated with the transmission of high-precision floating point numbers.Through comprehensive evaluations,we establish that assisted by LLM-based compression and ECCT-enhanced error correction,SSCC remains a viable and effective solution for modern communication systems.In other words,separate source channel coding is still what we need.展开更多
A dual double interlocked storage cell(DICE)interleaving layout static random-access memory(SRAM)is designed and manufactured based on 65 nm bulk complementary metal oxide semiconductor technology.The single event ups...A dual double interlocked storage cell(DICE)interleaving layout static random-access memory(SRAM)is designed and manufactured based on 65 nm bulk complementary metal oxide semiconductor technology.The single event upset(SEU)cross sections of this memory are obtained via heavy ion irradiation with a linear energy transfer(LET)value ranging from 1.7 to 83.4 MeV/(mg/cm^(2)).Experimental results show that the upset threshold(LETth)of a 4 KB block is approximately 6 MeV/(mg/cm^(2)),which is much better than that of a standard unhardened SRAM with an identical technology node.A 1 KB block has a higher LETth of 25 MeV/(mg/cm^(2))owing to the use of the error detection and correction(EDAC)code.For a Ta ion irradiation test with the highest LET value(83.4 MeV/(mg/cm^(2))),the benefit of the EDAC code is reduced significantly because the multi-bit upset proportion in the SEU is increased remarkably.Compared with normal incident ions,the memory exhibits a higher SEU sensitivity in the tilt angle irradiation test.Moreover,the SEU cross section indicates a significant dependence on the data pattern.When comprehensively considering HSPICE simulation results and the sensitive area distributions of the DICE cell,it is shown that the data pattern dependence is primarily associated with the arrangement of sensitive transistor pairs in the layout.Finally,some suggestions are provided to further improve the radiation resistance of the memory.By implementing a particular design at the layout level,the SEU tolerance of the memory is improved significantly at a low area cost.Therefore,the designed 65 nm SRAM is suitable for electronic systems operating in serious radiation environments.展开更多
Entanglement-assisted quantum error correction codes(EAQECCs)play an important role in quantum communications with noise.Such a scheme can use arbitrary classical linear code to transmit qubits over noisy quantum chan...Entanglement-assisted quantum error correction codes(EAQECCs)play an important role in quantum communications with noise.Such a scheme can use arbitrary classical linear code to transmit qubits over noisy quantum channels by consuming some ebits between the sender(Alice)and the receiver(Bob).It is usually assumed that the preshared ebits of Bob are error free.However,noise on these ebits is unavoidable in many cases.In this work,we evaluate the performance of EAQECCs with noisy ebits over asymmetric quantum channels and quantum channels with memory by computing the exact entanglement fidelity of several EAQECCs.We consider asymmetric errors in both qubits and ebits and show that the performance of EAQECCs in entanglement fidelity gets improved for qubits and ebits over asymmetric channels.In quantum memory channels,we compute the entanglement fidelity of several EAQECCs over Markovian quantum memory channels and show that the performance of EAQECCs is lowered down by the channel memory.Furthermore,we show that the performance of EAQECCs is diverse when the error probabilities of qubits and ebits are different.In both asymmetric and memory quantum channels,we show that the performance of EAQECCs is improved largely when the error probability of ebits is reasonably smaller than that of qubits.展开更多
A blind and readable image watermarking scheme using wavelet tree quantization is proposed. In order to increase the algorithm robustness and ensure the watermark integrity,error correction coding techniques are used ...A blind and readable image watermarking scheme using wavelet tree quantization is proposed. In order to increase the algorithm robustness and ensure the watermark integrity,error correction coding techniques are used to encode the embedded watermark. In the watermark embedding process, the wavelet coefficients of the host image are grouped into wavelet trees and each watermark bit is embedded by using two trees. The trees are so quantized that they exhibit a large enough statistical difference, which will later be used for watermark extraction. The experimental results show that the proposed algorithm is effective and robust to common image processing operations and some geometric operations such as JPEG compression, JPEG2000 compression, filtering, Gaussian noise attack, and row-column removal. It is demonstrated that the proposed technique is practical.展开更多
In this paper, the effect of imperfect channel state information at the receiver, which is caused by noise and other interference, on the multi-access channel capacity is analysed through a statistical-mechanical appr...In this paper, the effect of imperfect channel state information at the receiver, which is caused by noise and other interference, on the multi-access channel capacity is analysed through a statistical-mechanical approach. Replica analyses focus on analytically studying how the minimum mean square error (MMSE) channel estimation error appears in a multiuser channel capacity formula. And the relevant mathematical expressions are derived. At the same time, numerical simulation results are demonstrated to validate the Replica analyses. The simulation results show how the system parameters, such as channel estimation error, system load and signal-to-noise ratio, affect the channel capacity.展开更多
基金Sponsored by the Ministerial Level Advanced Research Foundation (20304)
文摘A new Chien search method for shortened Reed-Solomon (RS) code is proposed, based on this, a versatile RS decoder for correcting both errors and erasures is designed. Compared with the traditional RS decoder, the weighted coefficient of the Chien search method is calculated sequentially through the three pipelined stages of the decoder. And therefore, the computation of the errata locator polynomial and errata evaluator polynomial needs to be modified. The versatile RS decoder with minimum distance 21 has been synthesized in the Xilinx Virtex-Ⅱ series field programmable gate array (FPGA) xe2v1000-5 and is used by coneatenated coding system for satellite communication. Results show that the maximum data processing rate can be up to 1.3 Gbit/s.
文摘Csiszar's strong coding theorem for discrete memoryless scarce is generalized to arbitrarily varying source.We also determine the asymptotic error exponent for arbitrarily wrying source.
基金supported in part by the NSF of China under Grants 62322106,62071131,U2001203,61871136the Guangdong Basic and Applied Basic Research Foundation under Grant 2022B1515020086+1 种基金the International Collaborative Research Program of Guangdong Science and Technology Department under Grant 2022A0505050070the Industrial R&D Project of Haoyang Electronic Co.,Ltd.under Grant 2022440002001494.
文摘To mitigate the impact of noise and inter-ference on multi-level-cell(MLC)flash memory with the use of low-density parity-check(LDPC)codes,we propose a dynamic write-voltage design scheme con-sidering the asymmetric property of raw bit error rate(RBER),which can obtain the optimal write voltage by minimizing a cost function.In order to further improve the decoding performance of flash memory,we put forward a low-complexity entropy-based read-voltage optimization scheme,which derives the read voltages by searching for the optimal entropy value via a log-likelihood ratio(LLR)-aware cost function.Simulation results demonstrate the superiority of our proposed dynamic write-voltage design scheme and read-voltage optimization scheme with respect to the existing counterparts.
基金supported in part by the National Key Research and Development Program of China under Grant No.2024YFE0200600the Zhejiang Provincial Natural Science Foundation of China under Grant No.LR23F010005the Huawei Cooperation Project under Grant No.TC20240829036。
文摘Along with the proliferating research interest in semantic communication(Sem Com),joint source channel coding(JSCC)has dominated the attention due to the widely assumed existence in efficiently delivering information semantics.Nevertheless,this paper challenges the conventional JSCC paradigm and advocates for adopting separate source channel coding(SSCC)to enjoy a more underlying degree of freedom for optimization.We demonstrate that SSCC,after leveraging the strengths of the Large Language Model(LLM)for source coding and Error Correction Code Transformer(ECCT)complemented for channel coding,offers superior performance over JSCC.Our proposed framework also effectively highlights the compatibility challenges between Sem Com approaches and digital communication systems,particularly concerning the resource costs associated with the transmission of high-precision floating point numbers.Through comprehensive evaluations,we establish that assisted by LLM-based compression and ECCT-enhanced error correction,SSCC remains a viable and effective solution for modern communication systems.In other words,separate source channel coding is still what we need.
基金the National Natural Science Foundation of China(Nos.12035019,11690041,and 11805244).
文摘A dual double interlocked storage cell(DICE)interleaving layout static random-access memory(SRAM)is designed and manufactured based on 65 nm bulk complementary metal oxide semiconductor technology.The single event upset(SEU)cross sections of this memory are obtained via heavy ion irradiation with a linear energy transfer(LET)value ranging from 1.7 to 83.4 MeV/(mg/cm^(2)).Experimental results show that the upset threshold(LETth)of a 4 KB block is approximately 6 MeV/(mg/cm^(2)),which is much better than that of a standard unhardened SRAM with an identical technology node.A 1 KB block has a higher LETth of 25 MeV/(mg/cm^(2))owing to the use of the error detection and correction(EDAC)code.For a Ta ion irradiation test with the highest LET value(83.4 MeV/(mg/cm^(2))),the benefit of the EDAC code is reduced significantly because the multi-bit upset proportion in the SEU is increased remarkably.Compared with normal incident ions,the memory exhibits a higher SEU sensitivity in the tilt angle irradiation test.Moreover,the SEU cross section indicates a significant dependence on the data pattern.When comprehensively considering HSPICE simulation results and the sensitive area distributions of the DICE cell,it is shown that the data pattern dependence is primarily associated with the arrangement of sensitive transistor pairs in the layout.Finally,some suggestions are provided to further improve the radiation resistance of the memory.By implementing a particular design at the layout level,the SEU tolerance of the memory is improved significantly at a low area cost.Therefore,the designed 65 nm SRAM is suitable for electronic systems operating in serious radiation environments.
基金Project supported by the National Key R&D Program of China (Grant No.2022YFB3103802)the National Natural Science Foundation of China (Grant Nos.62371240 and 61802175)the Fundamental Research Funds for the Central Universities (Grant No.30923011014)。
文摘Entanglement-assisted quantum error correction codes(EAQECCs)play an important role in quantum communications with noise.Such a scheme can use arbitrary classical linear code to transmit qubits over noisy quantum channels by consuming some ebits between the sender(Alice)and the receiver(Bob).It is usually assumed that the preshared ebits of Bob are error free.However,noise on these ebits is unavoidable in many cases.In this work,we evaluate the performance of EAQECCs with noisy ebits over asymmetric quantum channels and quantum channels with memory by computing the exact entanglement fidelity of several EAQECCs.We consider asymmetric errors in both qubits and ebits and show that the performance of EAQECCs in entanglement fidelity gets improved for qubits and ebits over asymmetric channels.In quantum memory channels,we compute the entanglement fidelity of several EAQECCs over Markovian quantum memory channels and show that the performance of EAQECCs is lowered down by the channel memory.Furthermore,we show that the performance of EAQECCs is diverse when the error probabilities of qubits and ebits are different.In both asymmetric and memory quantum channels,we show that the performance of EAQECCs is improved largely when the error probability of ebits is reasonably smaller than that of qubits.
文摘A blind and readable image watermarking scheme using wavelet tree quantization is proposed. In order to increase the algorithm robustness and ensure the watermark integrity,error correction coding techniques are used to encode the embedded watermark. In the watermark embedding process, the wavelet coefficients of the host image are grouped into wavelet trees and each watermark bit is embedded by using two trees. The trees are so quantized that they exhibit a large enough statistical difference, which will later be used for watermark extraction. The experimental results show that the proposed algorithm is effective and robust to common image processing operations and some geometric operations such as JPEG compression, JPEG2000 compression, filtering, Gaussian noise attack, and row-column removal. It is demonstrated that the proposed technique is practical.
基金Project supported by the National Nature Science Foundation of China (Grant Nos 60773085 and 60801051)
文摘In this paper, the effect of imperfect channel state information at the receiver, which is caused by noise and other interference, on the multi-access channel capacity is analysed through a statistical-mechanical approach. Replica analyses focus on analytically studying how the minimum mean square error (MMSE) channel estimation error appears in a multiuser channel capacity formula. And the relevant mathematical expressions are derived. At the same time, numerical simulation results are demonstrated to validate the Replica analyses. The simulation results show how the system parameters, such as channel estimation error, system load and signal-to-noise ratio, affect the channel capacity.