针对通用视频编码(versatile video coding,VVC)在编码单元(coding unit,CU)划分中引入了多类型树划分结构导致编码复杂度增加的问题,提出了一种基于CU子块方向特性与空间复杂度的快速划分算法。首先利用CU整体的纹理复杂度对当前CU进...针对通用视频编码(versatile video coding,VVC)在编码单元(coding unit,CU)划分中引入了多类型树划分结构导致编码复杂度增加的问题,提出了一种基于CU子块方向特性与空间复杂度的快速划分算法。首先利用CU整体的纹理复杂度对当前CU进行分类,筛选出不划分CU;然后利用子块不同划分方向的特性差异提前决策CU划分方向;最后利用CU中间区域与边缘区域的复杂度差异特征判断是否跳过三叉树(ternary tree,TT)划分,进一步减少候选列表划分模式数量。实验结果表明,与官方测试平台VTM10.0相比,编码器在平均输出比特率增加1.12%的代价下,编码时间减少了40.25%,说明该算法在通用视频编码中能以较小的质量损失实现更短的编码时间。展开更多
单元测试用于检验软件单一模块的功能是否正确,是软件开发过程中的重要步骤,可以及时发现代码中的缺陷,提升软件的质量和可信度.由于手动编写单元测试费时费力,经常遗漏覆盖重要的代码逻辑.为此,研究者提出单元测试用例自动生成技术.近...单元测试用于检验软件单一模块的功能是否正确,是软件开发过程中的重要步骤,可以及时发现代码中的缺陷,提升软件的质量和可信度.由于手动编写单元测试费时费力,经常遗漏覆盖重要的代码逻辑.为此,研究者提出单元测试用例自动生成技术.近来,预训练大语言模型(large language models,LLM)已经广泛应用于代码生成相关任务.然而,当前在重要的系统级编程语言C上,还没有相关工作.为了填补这一空白,本文面向C程序设计并实现了基于LLM的单元测试用例生成方法LLM4CUTCG.该方法结合LLM多智能体交互和程序分析技术,客服了LLM内在问题.为了验证方法效果,收集了125个C语言目标程序,并针对这些程序生成测试用例.实验结果表明,LLM4CUTCG生成的测试行覆盖率为91.71%,测试预言正确率为50.05%.其覆盖率优于传统方法符号执行.展开更多
A new binuclear copper(Ⅱ) complex, [Cu2(phen)2(H2O)2( μ2-C2O4)](NO3)2, has been synthesized and characterized by elemental analysis, IR and UV-Vis spectrum. Its crystal structure was determined by single crystal X-r...A new binuclear copper(Ⅱ) complex, [Cu2(phen)2(H2O)2( μ2-C2O4)](NO3)2, has been synthesized and characterized by elemental analysis, IR and UV-Vis spectrum. Its crystal structure was determined by single crystal X-ray diffraction techniques. Crystal data: monoclinic, space group P21/c, a=0.712 21(8) nm, b=1.170 93(14) nm, c=1.783 7(2) nm, β=111.828(2)°, and V=1.380 8(3) nm3, Dc=1.769 Mg·m-3, Z=2, F(000)=744, R1=0.025 4, wR2=0.069 5, Gof=1.077, Δρ=328^-455 e·nm-3. The complex is packed by one centrosymmetry binuclear copper(Ⅱ) unit, oxalate dianion and NO3- anion. In the molecule structure of the title complex, two Cu(Ⅱ) ions are bridged by oxalate dianion and each Cu(Ⅱ) ions coordinates with two nitrogen atoms from 1,10-phenanthroline ligand and one oxygen atom from water to form a five-coordinate distorted square-pyramidal configuration. The hydrogen bonds are observed between coordinated water molecules and NO3- anions. The analysis of the crystal structure indicates that the complex has a two-dimensional stacking network structure, which is formed by intramolecular hydrogen bonds, intermolecular hydrogen bonds and stacking effect of aromatic ring. CCDC: 255345.展开更多
针对高效率视频编码(high efficiency video coding,HEVC)标准编码复杂度较高的问题,提出了一种快速编码单元(coding unit,CU)划分方法。首先,结合拉格朗日率失真优化理论及相关实验数据分析得到相邻CU深度对应的失真及码率分别满足线...针对高效率视频编码(high efficiency video coding,HEVC)标准编码复杂度较高的问题,提出了一种快速编码单元(coding unit,CU)划分方法。首先,结合拉格朗日率失真优化理论及相关实验数据分析得到相邻CU深度对应的失真及码率分别满足线性关系,并利用此关系,建立了率失真代价的预测模型。利用此模型,可以在编码当前CU深度后快速预测得到下一CU深度的率失真代价,并最终通过代价比较,判断是否需要继续进行CU划分。实验结果表明,相比于HEVC测试模型HM12.0,针对低时延与随机接入编码结构,提出的方法的BD-rate分别增加了0.2%与0.6%,同时,编码时间分别减少了33.2%和38.9%。展开更多
基于数据驱动的单元测试代码自动化生成技术存在覆盖率低和可读性差的问题,难以应对日益增长的测试需求。大语言模型(LLM)在代码生成任务中显示了极大的潜力,然而由于代码数据的功能风格和编码风格的差异,LLM面临灾难性遗忘和资源受限这...基于数据驱动的单元测试代码自动化生成技术存在覆盖率低和可读性差的问题,难以应对日益增长的测试需求。大语言模型(LLM)在代码生成任务中显示了极大的潜力,然而由于代码数据的功能风格和编码风格的差异,LLM面临灾难性遗忘和资源受限这2个挑战。为了解决这些问题,提出将编码风格和功能风格同步迁移微调的思想,并开发一种高效的LLM微调训练方法用于单元测试用例生成。首先,利用广泛使用的指令数据集对LLM进行指令对齐,并按任务类型对指令集分类;同时,提取并存储具有任务特征的权重增量;其次,设计一个自适应风格提取模块,该模块包含抗噪声干扰学习和编码风格回溯学习,以应对不同的代码编写风格;最后,在目标域分别对功能风格增量和编码风格增量进行联合训练,以实现在目标域低资源情况下的高效适配和微调。在SF110 Corpus of Classes数据集上的测试用例生成实验结果表明,所提方法的结果均优于对比方法,与主流代码生成LLM Codex、Code Llama和DeepSeek-Coder相比,所提方法的编译率分别提高0.8%、43.5%和33.8%、分支覆盖率分别提高3.1%、1.0%和17.2%;行覆盖率分别提高4.1%、6.5%和15.5%,验证了所提方法在代码生成任务上的优越性。展开更多
文摘针对通用视频编码(versatile video coding,VVC)在编码单元(coding unit,CU)划分中引入了多类型树划分结构导致编码复杂度增加的问题,提出了一种基于CU子块方向特性与空间复杂度的快速划分算法。首先利用CU整体的纹理复杂度对当前CU进行分类,筛选出不划分CU;然后利用子块不同划分方向的特性差异提前决策CU划分方向;最后利用CU中间区域与边缘区域的复杂度差异特征判断是否跳过三叉树(ternary tree,TT)划分,进一步减少候选列表划分模式数量。实验结果表明,与官方测试平台VTM10.0相比,编码器在平均输出比特率增加1.12%的代价下,编码时间减少了40.25%,说明该算法在通用视频编码中能以较小的质量损失实现更短的编码时间。
文摘单元测试用于检验软件单一模块的功能是否正确,是软件开发过程中的重要步骤,可以及时发现代码中的缺陷,提升软件的质量和可信度.由于手动编写单元测试费时费力,经常遗漏覆盖重要的代码逻辑.为此,研究者提出单元测试用例自动生成技术.近来,预训练大语言模型(large language models,LLM)已经广泛应用于代码生成相关任务.然而,当前在重要的系统级编程语言C上,还没有相关工作.为了填补这一空白,本文面向C程序设计并实现了基于LLM的单元测试用例生成方法LLM4CUTCG.该方法结合LLM多智能体交互和程序分析技术,客服了LLM内在问题.为了验证方法效果,收集了125个C语言目标程序,并针对这些程序生成测试用例.实验结果表明,LLM4CUTCG生成的测试行覆盖率为91.71%,测试预言正确率为50.05%.其覆盖率优于传统方法符号执行.
文摘A new binuclear copper(Ⅱ) complex, [Cu2(phen)2(H2O)2( μ2-C2O4)](NO3)2, has been synthesized and characterized by elemental analysis, IR and UV-Vis spectrum. Its crystal structure was determined by single crystal X-ray diffraction techniques. Crystal data: monoclinic, space group P21/c, a=0.712 21(8) nm, b=1.170 93(14) nm, c=1.783 7(2) nm, β=111.828(2)°, and V=1.380 8(3) nm3, Dc=1.769 Mg·m-3, Z=2, F(000)=744, R1=0.025 4, wR2=0.069 5, Gof=1.077, Δρ=328^-455 e·nm-3. The complex is packed by one centrosymmetry binuclear copper(Ⅱ) unit, oxalate dianion and NO3- anion. In the molecule structure of the title complex, two Cu(Ⅱ) ions are bridged by oxalate dianion and each Cu(Ⅱ) ions coordinates with two nitrogen atoms from 1,10-phenanthroline ligand and one oxygen atom from water to form a five-coordinate distorted square-pyramidal configuration. The hydrogen bonds are observed between coordinated water molecules and NO3- anions. The analysis of the crystal structure indicates that the complex has a two-dimensional stacking network structure, which is formed by intramolecular hydrogen bonds, intermolecular hydrogen bonds and stacking effect of aromatic ring. CCDC: 255345.
文摘针对高效率视频编码(high efficiency video coding,HEVC)标准编码复杂度较高的问题,提出了一种快速编码单元(coding unit,CU)划分方法。首先,结合拉格朗日率失真优化理论及相关实验数据分析得到相邻CU深度对应的失真及码率分别满足线性关系,并利用此关系,建立了率失真代价的预测模型。利用此模型,可以在编码当前CU深度后快速预测得到下一CU深度的率失真代价,并最终通过代价比较,判断是否需要继续进行CU划分。实验结果表明,相比于HEVC测试模型HM12.0,针对低时延与随机接入编码结构,提出的方法的BD-rate分别增加了0.2%与0.6%,同时,编码时间分别减少了33.2%和38.9%。
文摘基于数据驱动的单元测试代码自动化生成技术存在覆盖率低和可读性差的问题,难以应对日益增长的测试需求。大语言模型(LLM)在代码生成任务中显示了极大的潜力,然而由于代码数据的功能风格和编码风格的差异,LLM面临灾难性遗忘和资源受限这2个挑战。为了解决这些问题,提出将编码风格和功能风格同步迁移微调的思想,并开发一种高效的LLM微调训练方法用于单元测试用例生成。首先,利用广泛使用的指令数据集对LLM进行指令对齐,并按任务类型对指令集分类;同时,提取并存储具有任务特征的权重增量;其次,设计一个自适应风格提取模块,该模块包含抗噪声干扰学习和编码风格回溯学习,以应对不同的代码编写风格;最后,在目标域分别对功能风格增量和编码风格增量进行联合训练,以实现在目标域低资源情况下的高效适配和微调。在SF110 Corpus of Classes数据集上的测试用例生成实验结果表明,所提方法的结果均优于对比方法,与主流代码生成LLM Codex、Code Llama和DeepSeek-Coder相比,所提方法的编译率分别提高0.8%、43.5%和33.8%、分支覆盖率分别提高3.1%、1.0%和17.2%;行覆盖率分别提高4.1%、6.5%和15.5%,验证了所提方法在代码生成任务上的优越性。