期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
一种快速的多尺度多输入编码树单元互补分类网络
1
作者 唐述 周广义 +2 位作者 谢显中 赵瑜 杨书丽 《电子与信息学报》 EI CAS CSCD 北大核心 2024年第9期3646-3653,共8页
深度神经网络(DNN)已被广泛应用到高效视频编码(HEVC)编码树单元(CTU)的深度划分中,显著降低了编码复杂度。然而现有的基于DNN的CTU深度划分方法却忽略了不同尺度编码单元(CU)间的特征相关性和存在着分类错误累积等缺陷。基于此,该文提... 深度神经网络(DNN)已被广泛应用到高效视频编码(HEVC)编码树单元(CTU)的深度划分中,显著降低了编码复杂度。然而现有的基于DNN的CTU深度划分方法却忽略了不同尺度编码单元(CU)间的特征相关性和存在着分类错误累积等缺陷。基于此,该文提出一种多尺度多输入的互补分类网络(MCCN)来实现更高效且更准确的HEVC帧内CTU深度划分。首先,提出一种多尺度多输入的卷积神经网络(MMCNN),通过融合不同尺度CU的特征来建立CU间的关联,进一步提升网络的表达能力。然后,提出一种互补的分类策略(CCS),通过结合二分类和三分类,并采用投票机制来决定CTU中每个CU的最终深度值,有效避免了现有方法中存在的错误累积效应,实现了更准确的CTU深度划分。大量的实验结果表明,该文所提MCCN能够更大程度降低HEVC编码的复杂度,同时实现更准确的CTU深度划分:仅以增加3.18%的平均增量比特率(BD-BR)为代价,降低了71.49%的平均编码复杂度。同时,预测32×32 CU和16×16 CU的深度准确率分别提升了0.65%~0.93%和2.14%~9.27%。 展开更多
关键词 深度神经网络 帧内高效视频编码 特征表示 编码树单元深度划分 多尺度多输入 互补分类
在线阅读 下载PDF
高效视频编码帧内快速深度决策算法 被引量:1
2
作者 刘颖 高雪明 林庆帆 《计算机应用》 CSCD 北大核心 2016年第10期2854-2858,共5页
针对新一代高效视频编码(HEVC)帧内预测中编码单元(CU)的编码深度选择过程中计算复杂度较高的问题,提出了一种基于空域相关性的帧内快速深度决策算法。首先,利用相邻已编码树单元(CTU)的深度通过线性加权得到当前CTU深度估计值;然后,对... 针对新一代高效视频编码(HEVC)帧内预测中编码单元(CU)的编码深度选择过程中计算复杂度较高的问题,提出了一种基于空域相关性的帧内快速深度决策算法。首先,利用相邻已编码树单元(CTU)的深度通过线性加权得到当前CTU深度估计值;然后,对当前CTU深度估计值设置较为合适的深度双阈值提前终止编码树单元的划分或跳过CTU的某些深度,来缩小当前CTU的深度范围,从而减少不必要的深度计算。实验结果表明:与HM12.0相比,所提算法对比较简单的视频序列编码时间的减少比较明显,在亮度峰值信噪比(Y-PSNR)几乎不变的情况下(平均降低0.02 dB),编码时间平均减少了34.6%。此外,所提算法容易与其他算法进行融合,能进一步降低HEVC的帧内计算复杂度,最终达到实时传送高清视频的目的。 展开更多
关键词 高效视频编码 帧内预测 编码树单元 空域相关性 深度决策
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部