Task allocation for munition swarms is constrained by reachable region limitations and real-time requirements.This paper proposes a reachable region guided distributed coalition formation game(RRGDCF)method to address...Task allocation for munition swarms is constrained by reachable region limitations and real-time requirements.This paper proposes a reachable region guided distributed coalition formation game(RRGDCF)method to address these issues.To enable efficient online task allocation,a reachable region prediction strategy based on fully connected neural networks(FCNNs)is developed.This strategy integrates high-fidelity data generated from the golden section method and low-fidelity data from geometric approximation in an optimal mixing ratio to form multi-fidelity samples,significantly enhancing prediction accuracy and efficiency under limited high-fidelity samples.These predictions are then incorporated into the coalition formation game framework.A tabu search mechanism guided by the reachable region center directs munitions to execute tasks within their respective reachable regions,mitigating redundant operations on ineffective coalition structures.Furthermore,an adaptive guidance coalition formation strategy optimizes allocation plans by leveraging the hit probabilities of munitions,replacing traditional random coalition formation methods.Simulation results demonstrate that RRGDCF surpasses the contract network protocol and traditional coalition formation game algorithms in optimality and computational efficiency.Hardware experiments further validate the method's practicality in dynamic scenarios.展开更多
The formation of the manned aerial vehicle/unmanned aerial vehicle(MAV/UAV) task coalition is considered. To reduce the scale of the problem, the formation progress is divided into three phases. For the task clusterin...The formation of the manned aerial vehicle/unmanned aerial vehicle(MAV/UAV) task coalition is considered. To reduce the scale of the problem, the formation progress is divided into three phases. For the task clustering phase, the geographical position of tasks is taken into consideration and a cluster method is proposed. For the UAV allocation phase, the UAV requirement for both constrained and unconstrained resources is introduced, and a multi-objective optimal algorithm is proposed to solve the allocation problem. For the MAV allocation phase, the optimal model is firstly constructed and it is decomposed according to the ideal of greed to reduce the time complexity of the algorithm. Based on the above phases, the MAV/UAV task coalition formation method is proposed and the effectiveness and practicability are demonstrated by simulation examples.展开更多
The joint resource block(RB)allocation and power optimization problem is studied to maximize the sum-rate of the vehicle-to-vehicle(V2V)links in the device-to-device(D2D)-enabled V2V communication system,where one fea...The joint resource block(RB)allocation and power optimization problem is studied to maximize the sum-rate of the vehicle-to-vehicle(V2V)links in the device-to-device(D2D)-enabled V2V communication system,where one feasible cellular user(FCU)can share its RB with multiple V2V pairs.The problem is first formulated as a nonconvex mixed-integer nonlinear programming(MINLP)problem with constraint of the maximum interference power in the FCU links.Using the game theory,two coalition formation algorithms are proposed to accomplish V2V link partitioning and FCU selection,where the transferable utility functions are introduced to minimize the interference among the V2V links and the FCU links for the optimal RB allocation.The successive convex approximation(SCA)is used to transform the original problem into a convex one and the Lagrangian dual method is further applied to obtain the optimal transmit power of the V2V links.Finally,numerical results demonstrate the efficiency of the proposed resource allocation algorithm in terms of the system sum-rate.展开更多
基金supported by the National Natural Science Foundation of China(Grant 52372347,52425211,52272360)。
文摘Task allocation for munition swarms is constrained by reachable region limitations and real-time requirements.This paper proposes a reachable region guided distributed coalition formation game(RRGDCF)method to address these issues.To enable efficient online task allocation,a reachable region prediction strategy based on fully connected neural networks(FCNNs)is developed.This strategy integrates high-fidelity data generated from the golden section method and low-fidelity data from geometric approximation in an optimal mixing ratio to form multi-fidelity samples,significantly enhancing prediction accuracy and efficiency under limited high-fidelity samples.These predictions are then incorporated into the coalition formation game framework.A tabu search mechanism guided by the reachable region center directs munitions to execute tasks within their respective reachable regions,mitigating redundant operations on ineffective coalition structures.Furthermore,an adaptive guidance coalition formation strategy optimizes allocation plans by leveraging the hit probabilities of munitions,replacing traditional random coalition formation methods.Simulation results demonstrate that RRGDCF surpasses the contract network protocol and traditional coalition formation game algorithms in optimality and computational efficiency.Hardware experiments further validate the method's practicality in dynamic scenarios.
基金supported by the National Natural Science Foundation of China(61573017 61703425)the Aeronautical Science Fund(20175796014)
文摘The formation of the manned aerial vehicle/unmanned aerial vehicle(MAV/UAV) task coalition is considered. To reduce the scale of the problem, the formation progress is divided into three phases. For the task clustering phase, the geographical position of tasks is taken into consideration and a cluster method is proposed. For the UAV allocation phase, the UAV requirement for both constrained and unconstrained resources is introduced, and a multi-objective optimal algorithm is proposed to solve the allocation problem. For the MAV allocation phase, the optimal model is firstly constructed and it is decomposed according to the ideal of greed to reduce the time complexity of the algorithm. Based on the above phases, the MAV/UAV task coalition formation method is proposed and the effectiveness and practicability are demonstrated by simulation examples.
基金the National Natural Scientific Foundation of China(61771291,61571272)the Major Science and Technological Innovation Project of Shandong Province(2020CXGC010109).
文摘The joint resource block(RB)allocation and power optimization problem is studied to maximize the sum-rate of the vehicle-to-vehicle(V2V)links in the device-to-device(D2D)-enabled V2V communication system,where one feasible cellular user(FCU)can share its RB with multiple V2V pairs.The problem is first formulated as a nonconvex mixed-integer nonlinear programming(MINLP)problem with constraint of the maximum interference power in the FCU links.Using the game theory,two coalition formation algorithms are proposed to accomplish V2V link partitioning and FCU selection,where the transferable utility functions are introduced to minimize the interference among the V2V links and the FCU links for the optimal RB allocation.The successive convex approximation(SCA)is used to transform the original problem into a convex one and the Lagrangian dual method is further applied to obtain the optimal transmit power of the V2V links.Finally,numerical results demonstrate the efficiency of the proposed resource allocation algorithm in terms of the system sum-rate.