深部煤层处于高温高压环境,甲烷呈超临界态,实验获得过剩吸附量与实际的绝对吸附量存在较大偏差,二者之间的校正显得尤为重要。但目前校正系数中的吸附相密度大多采用了饱和液相密度或van der Waals密度这一定值,与甲烷吸附相密度随压...深部煤层处于高温高压环境,甲烷呈超临界态,实验获得过剩吸附量与实际的绝对吸附量存在较大偏差,二者之间的校正显得尤为重要。但目前校正系数中的吸附相密度大多采用了饱和液相密度或van der Waals密度这一定值,与甲烷吸附相密度随压力和温度变化的事实不符。本研究首先基于前人实验数据和理论分析建立了深部煤层中甲烷吸附相密度随温度和压力变化的数学模型;然后提出了吸附模型参数确定方法,优选出了考虑变吸附相密度的深部煤层气吸附解吸模型;最后进行了实例应用。研究表明,甲烷吸附相与游离相的密度差随压力先快速上升后缓慢上升并逐渐趋于一定值,随温度呈指数型渐进下降趋势;考虑变吸附相密度的深部煤层气吸附解吸模型,借助8个误差函数优选而来,可以准确表征深部煤层气吸附解吸特征;对于目标深部煤层气藏,Langmuir-Freundlich模型为最优的吸附解吸模型。研究成果可为深部煤层气藏类型划分、不同气体含量占比评价及排采制度优化确定提供理论基础。展开更多
三有源桥(triple active bridge,TAB)变换器可以灵活连接多个电压等级,在直流微网、混合储能等领域受到广泛关注.模型预测控制是提升TAB变换器动态性能、实现端口解耦的有效策略.然而,由于TAB变换器功率传输模型复杂,采用连续集模型预...三有源桥(triple active bridge,TAB)变换器可以灵活连接多个电压等级,在直流微网、混合储能等领域受到广泛关注.模型预测控制是提升TAB变换器动态性能、实现端口解耦的有效策略.然而,由于TAB变换器功率传输模型复杂,采用连续集模型预测控制,代价函数求解极其困难,工程应用价值低.本文结合有限集模型预测控制,首次提出了一种应用于TAB变换器的移相离散集模型预测控制方法.该方法在每个控制周期内通过对有限个离散化的移相角组合进行局部寻优,继而滑动寻优窗口,最终实现全局最优控制.该方法既保证了优异的动态性能、解耦性能,又避免了复杂的非线性方程组求解,极大增强了控制策略的实用性.同时,本文还分析了移相离散集模型预测控制中权重系数、离散增益、预测范围的优化配置.最后,通过实验验证了所提控制策略的有效性.展开更多
文摘深部煤层处于高温高压环境,甲烷呈超临界态,实验获得过剩吸附量与实际的绝对吸附量存在较大偏差,二者之间的校正显得尤为重要。但目前校正系数中的吸附相密度大多采用了饱和液相密度或van der Waals密度这一定值,与甲烷吸附相密度随压力和温度变化的事实不符。本研究首先基于前人实验数据和理论分析建立了深部煤层中甲烷吸附相密度随温度和压力变化的数学模型;然后提出了吸附模型参数确定方法,优选出了考虑变吸附相密度的深部煤层气吸附解吸模型;最后进行了实例应用。研究表明,甲烷吸附相与游离相的密度差随压力先快速上升后缓慢上升并逐渐趋于一定值,随温度呈指数型渐进下降趋势;考虑变吸附相密度的深部煤层气吸附解吸模型,借助8个误差函数优选而来,可以准确表征深部煤层气吸附解吸特征;对于目标深部煤层气藏,Langmuir-Freundlich模型为最优的吸附解吸模型。研究成果可为深部煤层气藏类型划分、不同气体含量占比评价及排采制度优化确定提供理论基础。
文摘三有源桥(triple active bridge,TAB)变换器可以灵活连接多个电压等级,在直流微网、混合储能等领域受到广泛关注.模型预测控制是提升TAB变换器动态性能、实现端口解耦的有效策略.然而,由于TAB变换器功率传输模型复杂,采用连续集模型预测控制,代价函数求解极其困难,工程应用价值低.本文结合有限集模型预测控制,首次提出了一种应用于TAB变换器的移相离散集模型预测控制方法.该方法在每个控制周期内通过对有限个离散化的移相角组合进行局部寻优,继而滑动寻优窗口,最终实现全局最优控制.该方法既保证了优异的动态性能、解耦性能,又避免了复杂的非线性方程组求解,极大增强了控制策略的实用性.同时,本文还分析了移相离散集模型预测控制中权重系数、离散增益、预测范围的优化配置.最后,通过实验验证了所提控制策略的有效性.