Chemical analysis of ammonium, nitrate and total nitrogen in tree leaves and roots and anin-vivo bioassay for nitrate reductase activity (NRA) were used to monitor the seasonal variations in nitrogen assimilation amon...Chemical analysis of ammonium, nitrate and total nitrogen in tree leaves and roots and anin-vivo bioassay for nitrate reductase activity (NRA) were used to monitor the seasonal variations in nitrogen assimilation among four coexisting dominant tree species, includingPinus koraiensis, Tilia amurensis, Fraxinus mandshurica andAcer mono, in a virgin mixed broad-leaved/Korean pine (Pinus koraiensis) forest. The soil study included individual horizons of L+F (0–5 cm), Ah (5–11 cm) and Aw (11–25 cm). All four species had nitrate and ammonium in their roots and leaves, and also NRA in leaves. This indicated that these coexisting species were adapted to ammonium + nitrate nutrition. A negative correlation existed between nitrate use and ammonium use. Ammonium concentration was higher than that of nitrate in tree leaves and roots, and also in soils, which indicated climax woody species had a relative preference for ammonium nutrition. There was a positive relationship between tree nitrogen nutrition use and soil nitrogen nutrient supply. Utilization of ammonium and nitrate as well as the seasonal patterns differed significantly between the species. Peaks of ammonium, nitrate, NRA and total nitrogen in one species were therefore not necessarily synchronous with peaks in other species, and which indicated a species-specific seasonal use of nitrogen. The species-specific temporal differentiation in nitrogen use might reduce the competition between co-existing species and may be an important mechanism promoting stability of virgin mixed broad-leaved//Korean pine forest.展开更多
Chemical and biochemical analysis methods were used to monitor the vedations of nitrogen nutrient among the dominance trees species in secondary succession process of the mixed broad - leaved/Korean pine forest on Cha...Chemical and biochemical analysis methods were used to monitor the vedations of nitrogen nutrient among the dominance trees species in secondary succession process of the mixed broad - leaved/Korean pine forest on Changbai Mountains, Northeast China. Amounts of total nitrogen, anunonium and NRA in soils of virgin broad-leaved/Korean pine forest which is in climax were higher than those of secondary birch forests those are in succession Stage. The amount of nitrate was in the other hand. In climax, dominance trees species are tolerant mesophytic trees such as Pinus Koraiensis, Tilia amurensis, Acer mono and also Fraxinus mandshurica, they are all ammonium + nitrate adapted species, but they show a preference for the anunonium rather than those of the pioneer trees species in secondary birch forest, such as Populus davidiava and Betula platyphylla. Because they have more ammonium in their leaves and roots, especially Pinus koraiensis. Populus davidvana and Betula plaaphlla are intolerant trees, amounts of nitrate and total nitrogen is higher in their leaves and roots and also NRA in their leaves, so they preference for the nitrate rather than the others.In secondary birch forest, the regeneration trees species adapt their nitroggn nutrient to the variation of nitrogen nutrient situation in soil, finally they could survival well and the secondary birch forest would succession to climax. In climax, dominance trees species adapt their Nitrogen nutrient to the situation in soil and there are not strong competition in nitrogen nutrient among them, so they can coexist well and keep the climax as stable vegetation.展开更多
文摘Chemical analysis of ammonium, nitrate and total nitrogen in tree leaves and roots and anin-vivo bioassay for nitrate reductase activity (NRA) were used to monitor the seasonal variations in nitrogen assimilation among four coexisting dominant tree species, includingPinus koraiensis, Tilia amurensis, Fraxinus mandshurica andAcer mono, in a virgin mixed broad-leaved/Korean pine (Pinus koraiensis) forest. The soil study included individual horizons of L+F (0–5 cm), Ah (5–11 cm) and Aw (11–25 cm). All four species had nitrate and ammonium in their roots and leaves, and also NRA in leaves. This indicated that these coexisting species were adapted to ammonium + nitrate nutrition. A negative correlation existed between nitrate use and ammonium use. Ammonium concentration was higher than that of nitrate in tree leaves and roots, and also in soils, which indicated climax woody species had a relative preference for ammonium nutrition. There was a positive relationship between tree nitrogen nutrition use and soil nitrogen nutrient supply. Utilization of ammonium and nitrate as well as the seasonal patterns differed significantly between the species. Peaks of ammonium, nitrate, NRA and total nitrogen in one species were therefore not necessarily synchronous with peaks in other species, and which indicated a species-specific seasonal use of nitrogen. The species-specific temporal differentiation in nitrogen use might reduce the competition between co-existing species and may be an important mechanism promoting stability of virgin mixed broad-leaved//Korean pine forest.
文摘Chemical and biochemical analysis methods were used to monitor the vedations of nitrogen nutrient among the dominance trees species in secondary succession process of the mixed broad - leaved/Korean pine forest on Changbai Mountains, Northeast China. Amounts of total nitrogen, anunonium and NRA in soils of virgin broad-leaved/Korean pine forest which is in climax were higher than those of secondary birch forests those are in succession Stage. The amount of nitrate was in the other hand. In climax, dominance trees species are tolerant mesophytic trees such as Pinus Koraiensis, Tilia amurensis, Acer mono and also Fraxinus mandshurica, they are all ammonium + nitrate adapted species, but they show a preference for the anunonium rather than those of the pioneer trees species in secondary birch forest, such as Populus davidiava and Betula platyphylla. Because they have more ammonium in their leaves and roots, especially Pinus koraiensis. Populus davidvana and Betula plaaphlla are intolerant trees, amounts of nitrate and total nitrogen is higher in their leaves and roots and also NRA in their leaves, so they preference for the nitrate rather than the others.In secondary birch forest, the regeneration trees species adapt their nitroggn nutrient to the variation of nitrogen nutrient situation in soil, finally they could survival well and the secondary birch forest would succession to climax. In climax, dominance trees species adapt their Nitrogen nutrient to the situation in soil and there are not strong competition in nitrogen nutrient among them, so they can coexist well and keep the climax as stable vegetation.