分析遗传算法(GA)及BP神经网络的结构特性,提出利用具有全局搜索能力的遗传算法来弥补BP网络的不足,克服BP(Error Back Propagation)算法收敛速度慢,易陷入局部极小点的缺点,优化神经网络的连接权值和阈值。针对地震预测中,震级预测的...分析遗传算法(GA)及BP神经网络的结构特性,提出利用具有全局搜索能力的遗传算法来弥补BP网络的不足,克服BP(Error Back Propagation)算法收敛速度慢,易陷入局部极小点的缺点,优化神经网络的连接权值和阈值。针对地震预测中,震级预测的困难性等问题,将具有全局搜索能力的遗传算法和具有深度搜索能力的BP算法相结合实现地震震级预测建模。通过实验比较得到了较好的预测结果,该模型是可行、有效的。展开更多
文摘分析遗传算法(GA)及BP神经网络的结构特性,提出利用具有全局搜索能力的遗传算法来弥补BP网络的不足,克服BP(Error Back Propagation)算法收敛速度慢,易陷入局部极小点的缺点,优化神经网络的连接权值和阈值。针对地震预测中,震级预测的困难性等问题,将具有全局搜索能力的遗传算法和具有深度搜索能力的BP算法相结合实现地震震级预测建模。通过实验比较得到了较好的预测结果,该模型是可行、有效的。