期刊文献+
共找到2,251篇文章
< 1 2 113 >
每页显示 20 50 100
Modified joint probabilistic data association with classification-aided for multitarget tracking 被引量:9
1
作者 Ba Hongxin Cao Lei +1 位作者 He Xinyi Cheng Qun 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2008年第3期434-439,共6页
Joint probabilistic data association is an effective method for tracking multiple targets in clutter, but only the target kinematic information is used in measure-to-track association. If the kinematic likelihoods are... Joint probabilistic data association is an effective method for tracking multiple targets in clutter, but only the target kinematic information is used in measure-to-track association. If the kinematic likelihoods are similar for different closely spaced targets, there is ambiguity in using the kinematic information alone; the correct association probability will decrease in conventional joint probabilistic data association algorithm and track coalescence will occur easily. A modified algorithm of joint probabilistic data association with classification-aided is presented, which avoids track coalescence when tracking multiple neighboring targets. Firstly, an identification matrix is defined, which is used to simplify validation matrix to decrease computational complexity. Then, target class information is integrated into the data association process. Performance comparisons with and without the use of class information in JPDA are presented on multiple closely spaced maneuvering targets tracking problem. Simulation results quantify the benefits of classification-aided JPDA for improved multiple targets tracking, especially in the presence of association uncertainty in the kinematic measurement and target maneuvering. Simulation results indicate that the algorithm is valid. 展开更多
关键词 multi-target tracking data association joint probabilistic data association classification information track coalescence maneuvering target.
在线阅读 下载PDF
Signal classification method based on data mining formulti-mode radar 被引量:10
2
作者 qiang guo pulong nan jian wan 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2016年第5期1010-1017,共8页
For the multi-mode radar working in the modern electronicbattlefield, different working states of one single radar areprone to being classified as multiple emitters when adoptingtraditional classification methods to p... For the multi-mode radar working in the modern electronicbattlefield, different working states of one single radar areprone to being classified as multiple emitters when adoptingtraditional classification methods to process intercepted signals,which has a negative effect on signal classification. A classificationmethod based on spatial data mining is presented to address theabove challenge. Inspired by the idea of spatial data mining, theclassification method applies nuclear field to depicting the distributioninformation of pulse samples in feature space, and digs out thehidden cluster information by analyzing distribution characteristics.In addition, a membership-degree criterion to quantify the correlationamong all classes is established, which ensures classificationaccuracy of signal samples. Numerical experiments show that thepresented method can effectively prevent different working statesof multi-mode emitter from being classified as several emitters,and achieve higher classification accuracy. 展开更多
关键词 multi-mode radar signal classification data mining nuclear field cloud model membership.
在线阅读 下载PDF
Data association based on target signal classification information 被引量:3
3
作者 Guo Lei Tang Bin Liu Gang 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2008年第2期246-251,共6页
In most of the passive tracking systems, only the target kinematical information is used in the measurement-to-track association, which results in error tracking in a multitarget environment, where the targets are too... In most of the passive tracking systems, only the target kinematical information is used in the measurement-to-track association, which results in error tracking in a multitarget environment, where the targets are too close to each other. To enhance the tracking accuracy, the target signal classification information (TSCI) should be used to improve the data association. The TSCI is integrated in the data association process using the JPDA (joint probabilistic data association). The use of the TSCI in the data association can improve discrimination by yielding a purer track and preserving continuity. To verify the validity of the application of TSCI, two simulation experiments are done on an air target-tracing problem, that is, one using the TSCI and the other not using the TSCI. The final comparison shows that the use of the TSCI can effectively improve tracking accuracy. 展开更多
关键词 passive tracking joint probabilistic data association target signal classification information.
在线阅读 下载PDF
THRFuzzy:Tangential holoentropy-enabled rough fuzzy classifier to classification of evolving data streams 被引量:1
4
作者 Jagannath E.Nalavade T.Senthil Murugan 《Journal of Central South University》 SCIE EI CAS CSCD 2017年第8期1789-1800,共12页
The rapid developments in the fields of telecommunication, sensor data, financial applications, analyzing of data streams, and so on, increase the rate of data arrival, among which the data mining technique is conside... The rapid developments in the fields of telecommunication, sensor data, financial applications, analyzing of data streams, and so on, increase the rate of data arrival, among which the data mining technique is considered a vital process. The data analysis process consists of different tasks, among which the data stream classification approaches face more challenges than the other commonly used techniques. Even though the classification is a continuous process, it requires a design that can adapt the classification model so as to adjust the concept change or the boundary change between the classes. Hence, we design a novel fuzzy classifier known as THRFuzzy to classify new incoming data streams. Rough set theory along with tangential holoentropy function helps in the designing the dynamic classification model. The classification approach uses kernel fuzzy c-means(FCM) clustering for the generation of the rules and tangential holoentropy function to update the membership function. The performance of the proposed THRFuzzy method is verified using three datasets, namely skin segmentation, localization, and breast cancer datasets, and the evaluated metrics, accuracy and time, comparing its performance with HRFuzzy and adaptive k-NN classifiers. The experimental results conclude that THRFuzzy classifier shows better classification results providing a maximum accuracy consuming a minimal time than the existing classifiers. 展开更多
关键词 data stream classification fuzzy rough set tangential holoentropy concept change
在线阅读 下载PDF
On Eigen-Matrix Translation Method for Classification of Biological Data
5
作者 JIANG Hao QIU Yushan +1 位作者 CHENG Xiaoqing CHING Waiki 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2015年第5期1212-1230,共19页
Driven by the challenge of integrating large amount of experimental data, classification technique emerges as one of the major and popular tools in computational biology and bioinformatics research. Machine learning m... Driven by the challenge of integrating large amount of experimental data, classification technique emerges as one of the major and popular tools in computational biology and bioinformatics research. Machine learning methods, especially kernel methods with Support Vector Machines (SVMs) are very popular and effective tools. In the perspective of kernel matrix, a technique namely Eigen- matrix translation has been introduced for protein data classification. The Eigen-matrix translation strategy has a lot of nice properties which deserve more exploration. This paper investigates the major role of Eigen-matrix translation in classification. The authors propose that its importance lies in the dimension reduction of predictor attributes within the data set. This is very important when the dimension of features is huge. The authors show by numerical experiments on real biological data sets that the proposed framework is crucial and effective in improving classification accuracy. This can therefore serve as a novel perspective for future research in dimension reduction problems. 展开更多
关键词 classification dimension reduction eigen-matrix translation glycan data kernel method(KM) support vector machine (SVM)
在线阅读 下载PDF
基于OpenMP的遥感影像并行ISODATA聚类研究 被引量:11
6
作者 刘扬 王鹏 +4 位作者 杨瑞 左宪禹 张周威 吴晓洋 渠涧涛 《计算机工程》 CAS CSCD 北大核心 2016年第7期238-243,250,共7页
针对传统影像分类算法执行效率较低,无法满足海量高分辨率遥感数据实时处理需求的问题,对资源三号卫星专题产品中遥感影像的迭代自组织数据分析算法进行分析与研究,设计一种基于OpenMP的并行ISODATA聚类算法(PIsodata Omp)。采用OpenMP... 针对传统影像分类算法执行效率较低,无法满足海量高分辨率遥感数据实时处理需求的问题,对资源三号卫星专题产品中遥感影像的迭代自组织数据分析算法进行分析与研究,设计一种基于OpenMP的并行ISODATA聚类算法(PIsodata Omp)。采用OpenMP技术优化ISODATA算法中的样本点聚类、聚类样本中心标准差计算,实现基于共享内存的单机多核并行化处理。实验结果表明,PIsodata Omp算法能在保证分类精度不变的情况下,明显提高资源三号卫星影像数据的处理速度。 展开更多
关键词 并行聚类 迭代自组织数据分析算法 OpenMP技术 遥感影像分类 多核处理
在线阅读 下载PDF
融合多级语义的中文医疗短文本分类模型
7
作者 杨杰 刘纳 +2 位作者 郑国风 李晨 道路 《郑州大学学报(理学版)》 北大核心 2026年第1期51-57,共7页
针对医疗短文本分类中关键语义信息提取不足与模型鲁棒性下降的问题,提出了融合多级语义信息的文本分类模型。首先,利用预训练模型捕获文本的初步语义特征。其次,通过胶囊网络提取关键语义信息,确保模型能够有效学习到短文本中的核心语... 针对医疗短文本分类中关键语义信息提取不足与模型鲁棒性下降的问题,提出了融合多级语义信息的文本分类模型。首先,利用预训练模型捕获文本的初步语义特征。其次,通过胶囊网络提取关键语义信息,确保模型能够有效学习到短文本中的核心语义;采用注意力池化技术聚焦文本中的文档级信息,增强对医学专业术语和概念的识别与理解。最后,引入对抗训练策略,提升模型在面对模糊表达或扰动输入时的稳定性和准确性。在CHIP-CTC、KUAKE_QIC和VSQ三个医疗文本分类数据集上验证了模型的有效性,结果表明,相较于现有模型,所提模型在三个数据集上的F 1值均有所提升,显著增强了中文医疗短文本的分类性能。 展开更多
关键词 中文医疗数据 短文本分类 语义融合 胶囊网络 注意力池化
在线阅读 下载PDF
Optimization of support vector machine power load forecasting model based on data mining and Lyapunov exponents 被引量:7
8
作者 牛东晓 王永利 马小勇 《Journal of Central South University》 SCIE EI CAS 2010年第2期406-412,共7页
According to the chaotic and non-linear characters of power load data,the time series matrix is established with the theory of phase-space reconstruction,and then Lyapunov exponents with chaotic time series are comput... According to the chaotic and non-linear characters of power load data,the time series matrix is established with the theory of phase-space reconstruction,and then Lyapunov exponents with chaotic time series are computed to determine the time delay and the embedding dimension.Due to different features of the data,data mining algorithm is conducted to classify the data into different groups.Redundant information is eliminated by the advantage of data mining technology,and the historical loads that have highly similar features with the forecasting day are searched by the system.As a result,the training data can be decreased and the computing speed can also be improved when constructing support vector machine(SVM) model.Then,SVM algorithm is used to predict power load with parameters that get in pretreatment.In order to prove the effectiveness of the new model,the calculation with data mining SVM algorithm is compared with that of single SVM and back propagation network.It can be seen that the new DSVM algorithm effectively improves the forecast accuracy by 0.75%,1.10% and 1.73% compared with SVM for two random dimensions of 11-dimension,14-dimension and BP network,respectively.This indicates that the DSVM gains perfect improvement effect in the short-term power load forecasting. 展开更多
关键词 power load forecasting support vector machine (SVM) Lyapunov exponent data mining embedding dimension feature classification
在线阅读 下载PDF
Notes on Data-driven System Approaches 被引量:31
9
作者 XU Jian-Xin HOU Zhong-Sheng 《自动化学报》 EI CSCD 北大核心 2009年第6期668-675,共8页
关键词 数据驱动 数据分析 自动化系统 分析方法
在线阅读 下载PDF
Feature Selection for Classificatory Analysis Based on Information-theoretic Criteria 被引量:3
10
作者 HUANG Jin-Jie LV Ning +1 位作者 LI Shuang-Quan CAI Yun-Ze 《自动化学报》 EI CSCD 北大核心 2008年第3期383-392,共10页
由选择为类别的分析减少模式的维数的特征选择目的而不是无关或冗余的特征最增进知识。在这研究,为特征评价的二项新奇信息理论上的措施被介绍:一个人是一个改进公式估计在候选人特征 fi 和给选择特征 S 的子集的目标班 C 之间的有条... 由选择为类别的分析减少模式的维数的特征选择目的而不是无关或冗余的特征最增进知识。在这研究,为特征评价的二项新奇信息理论上的措施被介绍:一个人是一个改进公式估计在候选人特征 fi 和给选择特征 S 的子集的目标班 C 之间的有条件的相互的信息,即,我(C;fi|S ) ,在假设下面,特征的那个信息一致地被散布;其它是基于的一个相互的信息(MI ) 能捕获无关、冗余的输入的建设性的标准在特征的信息的任意的分布下面展示。与这二项措施,二个新特征选择算法,叫了二次的 基于MI 的特征选择( QMIFS )途径和 基于MI 的建设性的标准( MICC )途径分别地,被建议,在哪个在 Battiti 的 MIFS 相似的没有参数并且( Kwak 和 Choi )的 MIFS-U 方法需要是预设。因此,怎么选择适当价值为的难处理的问题完全被避免与已经选择的特征做在关联之间的折衷到目标班和冗余性。试验性的结果表明 QMIFS 和 MICC 的好表演在上合成并且基准数据集合。 展开更多
关键词 特征选择 信息理论标准 模式分类 数据挖掘
在线阅读 下载PDF
Development of vehicle-recognition method on water surfaces using LiDAR data:SPD^(2)(spherically stratified point projection with diameter and distance)
11
作者 Eon-ho Lee Hyeon Jun Jeon +2 位作者 Jinwoo Choi Hyun-Taek Choi Sejin Lee 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第6期95-104,共10页
Swarm robot systems are an important application of autonomous unmanned surface vehicles on water surfaces.For monitoring natural environments and conducting security activities within a certain range using a surface ... Swarm robot systems are an important application of autonomous unmanned surface vehicles on water surfaces.For monitoring natural environments and conducting security activities within a certain range using a surface vehicle,the swarm robot system is more efficient than the operation of a single object as the former can reduce cost and save time.It is necessary to detect adjacent surface obstacles robustly to operate a cluster of unmanned surface vehicles.For this purpose,a LiDAR(light detection and ranging)sensor is used as it can simultaneously obtain 3D information for all directions,relatively robustly and accurately,irrespective of the surrounding environmental conditions.Although the GPS(global-positioning-system)error range exists,obtaining measurements of the surface-vessel position can still ensure stability during platoon maneuvering.In this study,a three-layer convolutional neural network is applied to classify types of surface vehicles.The aim of this approach is to redefine the sparse 3D point cloud data as 2D image data with a connotative meaning and subsequently utilize this transformed data for object classification purposes.Hence,we have proposed a descriptor that converts the 3D point cloud data into 2D image data.To use this descriptor effectively,it is necessary to perform a clustering operation that separates the point clouds for each object.We developed voxel-based clustering for the point cloud clustering.Furthermore,using the descriptor,3D point cloud data can be converted into a 2D feature image,and the converted 2D image is provided as an input value to the network.We intend to verify the validity of the proposed 3D point cloud feature descriptor by using experimental data in the simulator.Furthermore,we explore the feasibility of real-time object classification within this framework. 展开更多
关键词 Object classification Clustering 3D point cloud data LiDAR(light detection and ranging) Surface vehicle
在线阅读 下载PDF
生态环境监测数据分类分级规则研究 被引量:3
12
作者 倪永 郑明清 +3 位作者 郝千婷 王旭 周玉科 于勇 《中国环境监测》 北大核心 2025年第2期56-62,共7页
为解决生态环境监测数据量激增、应用需求多样、治理成本加剧和安全风险挑战大之间的矛盾,采用先分类后分级、多维分类、明确分级的策略,提出了一种基于监测数据管理现状和应用场景的数据分类分级规则。首先梳理设计出生态环境监测数据... 为解决生态环境监测数据量激增、应用需求多样、治理成本加剧和安全风险挑战大之间的矛盾,采用先分类后分级、多维分类、明确分级的策略,提出了一种基于监测数据管理现状和应用场景的数据分类分级规则。首先梳理设计出生态环境监测数据4个门类和“3+4”分级模式,给出相应分类、分级方法及示例;其次,将分类分级维度与业务管理维度结合,形成分类分级模型;最后,设计了数据安全管理机制,支持数据资源安全精细化管控。该数据分类分级规则有助于生态环境监测机构完善数据管理机制、保障数据安全、促进生态环境监测数据共享和智慧化应用。 展开更多
关键词 生态环境监测 数据安全 数据分类 数据分级
在线阅读 下载PDF
数据安全刑法保护的模式转换:从管理安全到利用安全 被引量:9
13
作者 梅传强 盛浩 《重庆大学学报(社会科学版)》 北大核心 2025年第1期272-288,共17页
数据安全关乎国家安全和社会稳定,通过刑法保护数据安全既有必要性也有紧迫性。经过修正案的完善和司法解释的补充,我国刑法形成了保护数据安全的“管理安全模式”,即以静态数据的保密性、完整性、可用性为规范目的,以非法获取计算机信... 数据安全关乎国家安全和社会稳定,通过刑法保护数据安全既有必要性也有紧迫性。经过修正案的完善和司法解释的补充,我国刑法形成了保护数据安全的“管理安全模式”,即以静态数据的保密性、完整性、可用性为规范目的,以非法获取计算机信息系统数据罪、破坏计算机信息系统罪为规范依托的数据安全保护标准样式。“管理安全”保护模式的确立经历了数据作为计算机信息系统的保护附带内容、数据成为相对独立的刑法保护对象,以及借助司法解释扩大数据安全涵摄范围三个发展阶段。从规范上分析,“管理安全”保护模式具有封闭性、静态性特征,这难以适应数字社会数据动态化、共享化发展的趋势,未能实现与《中华人民共和国数据安全法》等前置法的有序衔接,并导致刑法中数据犯罪条款在司法适用出现“模糊化”的问题。数字社会的到来产生了新的数据安全风险类型,即分析数据所产生的风险,以及利用分析数据产生的知识和信息,作出决策而引发的风险。面对新的风险类型,数据安全保护亟需转向以动态数据的保密性、完整性、可用性、可控性、正当性为核心的“利用安全”模式:在保护理念上,应当将数据作为独立对象,从依附保护向专门保护、系统保护转变;在规制重心上,从注重数据收集、储存节点向其他节点拓展,从片面保护向全链条保护转变;在保护策略上,从笼统保护向分类分级保护转变。为此,应当在优化现有数据犯罪条款的基础上,增设新的数据犯罪,并引入数据分级分类保护制度。具体而言:一是在立法上明确数据与信息、计算机信息系统的关系,并剥离出独立的数据条款,实现数据安全的专门保护,同时,在《中华人民共和国刑法》分则中集中规定危害数据安全犯罪,实现系统化保护;二是增设非法公开、提供、出售、出境数据罪,非法分析数据罪、非法运用数据分析结果罪等犯罪,实现周延保护;三是构建数据安全分级分类保护制度,即在定罪层面,数据分级分类与数据犯罪的认定相结合,在量刑层面,数据分级分类与数据犯罪的刑罚裁量相对接,实现分级分类保护。 展开更多
关键词 数据安全 数字社会 刑法保护模式 数据分级分类 数据合规
在线阅读 下载PDF
基于多模态的缺陷绝缘子图像的多标签分类 被引量:4
14
作者 周景 王满意 田兆星 《高电压技术》 北大核心 2025年第2期642-651,共10页
对巡检图像中绝缘子缺陷准确分类是输电线路自动巡检领域中的关键技术之一。针对传统深度学习的分类方法对文本信息利用不够充分以及绝缘子图像分类标签较为单一的问题,该文首次提出了一种基于多模态的缺陷绝缘子图像的多标签分类方法... 对巡检图像中绝缘子缺陷准确分类是输电线路自动巡检领域中的关键技术之一。针对传统深度学习的分类方法对文本信息利用不够充分以及绝缘子图像分类标签较为单一的问题,该文首次提出了一种基于多模态的缺陷绝缘子图像的多标签分类方法。首先,采用一种多模态联合数据增强方法,实现了绝缘子图像和标签文本间跨模态的数据增强。然后,使用Vision Transformer网络提取图像的特征信息和BERT网络提取标签文本的特征信息,充分利用图像和标签文本的特征信息,从不同模态获取全面的信息,提高了网络的分类能力。最后,通过对比学习的方式将图像和文本的特征信息关联,增强网络分类的可靠性的同时,又为分类结果提供了良好的可解释性。实验结果表明,该方法的分类总体准确率达到93.87%,在同一数据集中对比其他模型,分类性能具有明显优势,为多模态技术在电网领域的应用提供了较好的基础。 展开更多
关键词 绝缘子图像 多标签分类 多模态 对比学习 数据增强
在线阅读 下载PDF
基于深度学习的时序数据异常检测研究综述 被引量:3
15
作者 陈红松 刘新蕊 +1 位作者 陶子美 王志恒 《信息网络安全》 北大核心 2025年第3期364-391,共28页
时序数据异常检测是数据挖掘及网络安全领域的重要研究课题。文章以时序数据异常检测技术为研究对象,运用文献调研与比较分析方法,深入探讨了深度学习模型在该领域的应用及其研究进展。文章首先介绍了深度时序数据异常检测的定义与应用... 时序数据异常检测是数据挖掘及网络安全领域的重要研究课题。文章以时序数据异常检测技术为研究对象,运用文献调研与比较分析方法,深入探讨了深度学习模型在该领域的应用及其研究进展。文章首先介绍了深度时序数据异常检测的定义与应用;其次,提出了深度时序数据异常检测面临的9个问题与挑战,并将时序数据异常分为10类,枚举了16种典型的时序数据异常检测数据集,其中包括5种社交网络舆情安全领域相关数据集;再次,文章将深度时序数据异常检测模型进行分类研究,分析总结了近50个相关模型,其中包括基于半监督增量学习的社交网络不良信息发布者异常检测,进一步地,文章依据深度学习模型的学习模式将模型划分为基于重构、基于预测、基于重构与预测融合3种类型,并对这些模型的优缺点及应用场景进行综合分析;最后,文章从8个方面展望了深度时序异常检测技术的未来研究方向,分析了每个方向的潜在研究价值及技术瓶颈。 展开更多
关键词 深度学习 时序数据 异常检测 模型分类 社交网络
在线阅读 下载PDF
“十五五”期间档案数据安全共享字段级组织策略——基于医院电子档案数据分类分级管理的改进 被引量:2
16
作者 谷波 《档案管理》 北大核心 2025年第3期88-91,96,共5页
在“十五五”规划的关键时期,随着信息技术在档案领域的深入应用,医院电子档案数据的管理面临着新的挑战与机遇。本文聚焦于医院电子档案数据的精细化管控,深入探讨其分类分级管理的改进策略,旨在构建更为完善的医院电子档案数据安全共... 在“十五五”规划的关键时期,随着信息技术在档案领域的深入应用,医院电子档案数据的管理面临着新的挑战与机遇。本文聚焦于医院电子档案数据的精细化管控,深入探讨其分类分级管理的改进策略,旨在构建更为完善的医院电子档案数据安全共享字段级组织体系。通过对现有数据分类分级方法的分析,结合医院电子档案数据的特点和实际需求,提出优化分类标准、细化分级层次的具体措施,以提高数据管理的精准性和安全性,促进数据的安全共享、充分利用,最大限度地提升数据的利用价值。本文的研究对于提升医院电子档案数据管理水平、促进医疗服务质量的提升具有重要的理论和实践意义,能为“十五五”期间档案事业在医疗领域的数字化转型提供有益参考。 展开更多
关键词 “十五五”规划 医疗数据 电子档案 分类分级 数据安全 全生命周期 安全管控策略
在线阅读 下载PDF
融合持续同调-CNN的灰度化光伏红外图像的识别和分类 被引量:2
17
作者 孙海蓉 唐振超 +1 位作者 张洪玮 周黎辉 《太阳能学报》 北大核心 2025年第6期321-328,共8页
针对卷积神经网络对光伏红外热斑图像进行识别和分类准确率低、计算量大、光伏红外图像上热斑特征难以识别的问题,提出一种基于持续同调的对灰度化光伏热斑图像提取拓扑特征的算法。首先,将光伏红外热斑图像灰度化;然后将灰度化之后的... 针对卷积神经网络对光伏红外热斑图像进行识别和分类准确率低、计算量大、光伏红外图像上热斑特征难以识别的问题,提出一种基于持续同调的对灰度化光伏热斑图像提取拓扑特征的算法。首先,将光伏红外热斑图像灰度化;然后将灰度化之后的图像进行持续同调计算,得到条形码,从条形码中提取其拓扑特征组成新的图像;最后,用卷积神经网络对新的图像进行识别和分类。实验结果表明,灰度化后的光伏红外图像是一个单通道图像,计算量更小;提取的光伏红外热斑图像拓扑特征更易识别和分类,准确率更高。 展开更多
关键词 特征提取 卷积神经网络 持续同调 拓扑数据分析 拓扑特征 识别和分类
在线阅读 下载PDF
融合大语言模型和数据增强的文本情感分类模型研究 被引量:1
18
作者 杨巍 肖强 《情报杂志》 北大核心 2025年第8期172-179,197,共9页
[研究目的]探索应用大语言模型(LLMs)的内容理解能力和生成能力,提升现有情感分类模型的准确性。[研究方法]提出了融合LLMs内容理解能力和生成能力的文本情感分类模型LLMGen4Sent,以深入挖掘文本所蕴含的情感内涵,并通过增强数据和对比... [研究目的]探索应用大语言模型(LLMs)的内容理解能力和生成能力,提升现有情感分类模型的准确性。[研究方法]提出了融合LLMs内容理解能力和生成能力的文本情感分类模型LLMGen4Sent,以深入挖掘文本所蕴含的情感内涵,并通过增强数据和对比学习技术,提升样本的多样性和情感语义表征准确性。[研究结果/结论]实验结果表明,LLMGen4Sent在ChnSentiCorp和IMDB数据集上均取得了优异的性能;相对TextCNN模型,ACC准确率提升了12.22%、12.99%;相对Bert模型,ACC准确率提升了5.72%、5.88%;同时,通过消融实验也论证了LLMGen4Sent模型中各个模块的有效性。LLMGen4Sent模型能够有效捕捉文本的深层情感特征,并通过生成式数据增强技术和对比学习技术显著提高现有文本情感分类模型的准确性。 展开更多
关键词 情感分类模型 大语言模型 内容理解 数据增强 LLMGen4Sent
在线阅读 下载PDF
矿井多人员定位轨迹的预警分类方法研究 被引量:1
19
作者 蔡安江 徐海涛 +1 位作者 程东波 刘锋伟 《金属矿山》 北大核心 2025年第1期243-249,共7页
为解决矿井综采操作区域多人员定位轨迹的预警分类问题,提出了一种基于超宽带(Ultra Wide Band,UWB)的多人员定位轨迹数据的预警分类方法。该方法首先对采集的UWB定位轨迹数据进行预处理;然后利用UWB定位轨迹数据中的人员ID、坐标、时... 为解决矿井综采操作区域多人员定位轨迹的预警分类问题,提出了一种基于超宽带(Ultra Wide Band,UWB)的多人员定位轨迹数据的预警分类方法。该方法首先对采集的UWB定位轨迹数据进行预处理;然后利用UWB定位轨迹数据中的人员ID、坐标、时间、求救信号等特征参数作为UWB人员定位轨迹预警分类模型的输入指标,以人员的预警行为类别作为输出指标,对预警分类模型进行拟合训练,基于人员4级违规预警机制与专家建议设置预警阈值;最后采用随机森林算法对多人员UWB定位轨迹数据进行人员行为预警识别和分类。研究表明:该方法能够对区域人员作业超员、工作超时、作业求救、定位轨迹缺失和作业越界等行为进行有效预警并准确分类,能够消除隐患,提高矿山人员管理效率和生产作业的安全性。 展开更多
关键词 矿井定位 多人员 预警分类 UWB定位轨迹数据 随机森林算法
在线阅读 下载PDF
面向二分类问题的直觉模糊深度随机配置网络
20
作者 丁世飞 朱姜兰 +2 位作者 张成龙 郭丽丽 张健 《软件学报》 北大核心 2025年第10期4660-4670,共11页
深度随机配置网络(deep stochastic configuration network,DSCN)采取前馈学习方式,基于特有的监督机制随机分配节点参数,具有全局逼近性.但是,在实际场景下,数据采集过程中潜在的离群值和噪声,易对分类结果产生负面影响.为提高DSCN解... 深度随机配置网络(deep stochastic configuration network,DSCN)采取前馈学习方式,基于特有的监督机制随机分配节点参数,具有全局逼近性.但是,在实际场景下,数据采集过程中潜在的离群值和噪声,易对分类结果产生负面影响.为提高DSCN解决二分类问题的性能,基于DSCN引入直觉模糊数思想,提出了一种直觉模糊深度随机配置网络(intuitionistic fuzzy deep stochastic configuration network,IFDSCN).与标准DSCN不同,IFDSCN通过计算样本隶属度和非隶属度,为每个样本分配一个直觉模糊数,通过加权的方法来生成最优分类器,以克服噪声和异常值对数据分类的负面影响.在8个基准数据集上的实验结果表明,所提出的模型与直觉模糊孪生支持向量机(intuitionistic fuzzy twin support vector machine,IFTWSVM)、核岭回归(kernel ridge regression,KRR)、直觉模糊核岭回归(intuitionistic fuzzy kernel ridge regression,IFKRR)、随机函数向量链接神经网络(random vector functional link neural network,RVFL)和SCN等学习模型相比,IFDSCN具有更好的二分类性能. 展开更多
关键词 直觉模糊数 随机配置网络 二分类 数据噪声 神经网络
在线阅读 下载PDF
上一页 1 2 113 下一页 到第
使用帮助 返回顶部