In many machine learning problems, a large amount of data is available but only a few of them can be labeled easily. This provides a research branch to effectively combine unlabeled and labeled data to infer the label...In many machine learning problems, a large amount of data is available but only a few of them can be labeled easily. This provides a research branch to effectively combine unlabeled and labeled data to infer the labels of unlabeled ones, that is, to develop transductive learning. In this article, based on Pattern classification via single sphere (SSPC), which seeks a hypersphere to separate data with the maximum separation ratio, a progressive transductive pattern classification method via single sphere (PTSSPC) is proposed to construct the classifier using both the labeled and unlabeled data. PTSSPC utilize the additional information of the unlabeled samples and obtain better classification performance than SSPC when insufficient labeled data information is available. Experiment results show the algorithm can yields better performance.展开更多
Experimentation data of perspex glass sheet cutting, using CO2 laser, with missing values were modelled with semi-supervised artificial neural networks. Factorial design of experiment was selected for the verification...Experimentation data of perspex glass sheet cutting, using CO2 laser, with missing values were modelled with semi-supervised artificial neural networks. Factorial design of experiment was selected for the verification of orthogonal array based model prediction. It shows improvement in modelling of edge quality and kerf width by applying semi-supervised learning algorithm, based on novel error assessment on simulations. The results are expected to depict better prediction on average by utilizing the systematic randomized techniques to initialize the neural network weights and increase the number of initialization. Missing values handling is difficult with statistical tools and supervised learning techniques; on the other hand, semi-supervised learning generates better results with the smallest datasets even with missing values.展开更多
To overcome the deficiencies of high computational complexity and low convergence speed in traditional neural networks, a novel bio-inspired machine learning algorithm named brain emotional learning (BEL) is introdu...To overcome the deficiencies of high computational complexity and low convergence speed in traditional neural networks, a novel bio-inspired machine learning algorithm named brain emotional learning (BEL) is introduced. BEL mimics the emotional learning mechanism in brain which has the superior features of fast learning and quick reacting. To further improve the performance of BEL in data analysis, genetic algorithm (GA) is adopted for optimally tuning the weights and biases of amygdala and orbitofrontal cortex in BEL neural network. The integrated algorithm named GA-BEL combines the advantages of the fast learning of BEL, and the global optimum solution of GA. GA-BEL has been tested on a real-world chaotic time series of geomagnetic activity index for prediction, eight benchmark datasets of university California at Irvine (UCI) and a functional magnetic resonance imaging (fMRI) dataset for classifications. The comparisons of experimental results have shown that the proposed GA-BEL algorithm is more accurate than the original BEL in prediction, and more effective when dealing with large-scale classification problems. Further, it outperforms most other traditional algorithms in terms of accuracy and execution speed in both prediction and classification applications.展开更多
Multi-label data with high dimensionality often occurs,which will produce large time and energy overheads when directly used in classification tasks.To solve this problem,a novel algorithm called multi-label dimension...Multi-label data with high dimensionality often occurs,which will produce large time and energy overheads when directly used in classification tasks.To solve this problem,a novel algorithm called multi-label dimensionality reduction via semi-supervised discriminant analysis(MSDA) was proposed.It was expected to derive an objective discriminant function as smooth as possible on the data manifold by multi-label learning and semi-supervised learning.By virtue of the latent imformation,which was provided by the graph weighted matrix of sample attributes and the similarity correlation matrix of partial sample labels,MSDA readily made the separability between different classes achieve maximization and estimated the intrinsic geometric structure in the lower manifold space by employing unlabeled data.Extensive experimental results on several real multi-label datasets show that after dimensionality reduction using MSDA,the average classification accuracy is about 9.71% higher than that of other algorithms,and several evaluation metrices like Hamming-loss are also superior to those of other dimensionality reduction methods.展开更多
基金supported by the National Natural Science of China(6057407560705004).
文摘In many machine learning problems, a large amount of data is available but only a few of them can be labeled easily. This provides a research branch to effectively combine unlabeled and labeled data to infer the labels of unlabeled ones, that is, to develop transductive learning. In this article, based on Pattern classification via single sphere (SSPC), which seeks a hypersphere to separate data with the maximum separation ratio, a progressive transductive pattern classification method via single sphere (PTSSPC) is proposed to construct the classifier using both the labeled and unlabeled data. PTSSPC utilize the additional information of the unlabeled samples and obtain better classification performance than SSPC when insufficient labeled data information is available. Experiment results show the algorithm can yields better performance.
文摘Experimentation data of perspex glass sheet cutting, using CO2 laser, with missing values were modelled with semi-supervised artificial neural networks. Factorial design of experiment was selected for the verification of orthogonal array based model prediction. It shows improvement in modelling of edge quality and kerf width by applying semi-supervised learning algorithm, based on novel error assessment on simulations. The results are expected to depict better prediction on average by utilizing the systematic randomized techniques to initialize the neural network weights and increase the number of initialization. Missing values handling is difficult with statistical tools and supervised learning techniques; on the other hand, semi-supervised learning generates better results with the smallest datasets even with missing values.
基金Project(61403422)supported by the National Natural Science Foundation of ChinaProject(17C1084)supported by Hunan Education Department Science Foundation of ChinaProject(17ZD02)supported by Hunan University of Arts and Science,China
文摘To overcome the deficiencies of high computational complexity and low convergence speed in traditional neural networks, a novel bio-inspired machine learning algorithm named brain emotional learning (BEL) is introduced. BEL mimics the emotional learning mechanism in brain which has the superior features of fast learning and quick reacting. To further improve the performance of BEL in data analysis, genetic algorithm (GA) is adopted for optimally tuning the weights and biases of amygdala and orbitofrontal cortex in BEL neural network. The integrated algorithm named GA-BEL combines the advantages of the fast learning of BEL, and the global optimum solution of GA. GA-BEL has been tested on a real-world chaotic time series of geomagnetic activity index for prediction, eight benchmark datasets of university California at Irvine (UCI) and a functional magnetic resonance imaging (fMRI) dataset for classifications. The comparisons of experimental results have shown that the proposed GA-BEL algorithm is more accurate than the original BEL in prediction, and more effective when dealing with large-scale classification problems. Further, it outperforms most other traditional algorithms in terms of accuracy and execution speed in both prediction and classification applications.
基金Project(60425310) supported by the National Science Fund for Distinguished Young ScholarsProject(10JJ6094) supported by the Hunan Provincial Natural Foundation of China
文摘Multi-label data with high dimensionality often occurs,which will produce large time and energy overheads when directly used in classification tasks.To solve this problem,a novel algorithm called multi-label dimensionality reduction via semi-supervised discriminant analysis(MSDA) was proposed.It was expected to derive an objective discriminant function as smooth as possible on the data manifold by multi-label learning and semi-supervised learning.By virtue of the latent imformation,which was provided by the graph weighted matrix of sample attributes and the similarity correlation matrix of partial sample labels,MSDA readily made the separability between different classes achieve maximization and estimated the intrinsic geometric structure in the lower manifold space by employing unlabeled data.Extensive experimental results on several real multi-label datasets show that after dimensionality reduction using MSDA,the average classification accuracy is about 9.71% higher than that of other algorithms,and several evaluation metrices like Hamming-loss are also superior to those of other dimensionality reduction methods.