设{Xn,n≥1}是同分布的ρ*混合序列,其分布属于特征指数为α(0<α<2)的非退化稳定分布正则吸引场.利用ρ*混合序列的矩不等式证明了依概率1有lim sup〔〔sum from i=1 to n Xi〕/n1/α〕1/(log logn)=e1/α n→∞,并获得了一系列...设{Xn,n≥1}是同分布的ρ*混合序列,其分布属于特征指数为α(0<α<2)的非退化稳定分布正则吸引场.利用ρ*混合序列的矩不等式证明了依概率1有lim sup〔〔sum from i=1 to n Xi〕/n1/α〕1/(log logn)=e1/α n→∞,并获得了一系列等价条件.展开更多
设{εt,t∈Z}为定义在同一概率空间(Ω,F,P)上的严平稳随机变量序列,满足Eε0=0,E|ε_0|~p<∞,对某个p>2,且满足强混合条件.{a_j,j∈Z}为一实数序列,满足sum from -∞ to ∞(|a_j|)<∞,sum from -∞ to ∞(a_j)≠0.令X_t=sum f...设{εt,t∈Z}为定义在同一概率空间(Ω,F,P)上的严平稳随机变量序列,满足Eε0=0,E|ε_0|~p<∞,对某个p>2,且满足强混合条件.{a_j,j∈Z}为一实数序列,满足sum from -∞ to ∞(|a_j|)<∞,sum from -∞ to ∞(a_j)≠0.令X_t=sum from -∞ to ∞(a_jε_(t-j))(t≥1),S_n=sum from 1 to n(X_t)(n≥1).利用由强混合序列生成的线性过程的弱收敛定理及矩不等式讨论了在bn=O(1/loglogn)的条件下,当∈→0时,P{|S_n|≥(∈+b_n)τ(2nloglogn)^(1/2)}的一类加权级数的收敛性质.展开更多
文摘设{εt,t∈Z}为定义在同一概率空间(Ω,F,P)上的严平稳随机变量序列,满足Eε0=0,E|ε_0|~p<∞,对某个p>2,且满足强混合条件.{a_j,j∈Z}为一实数序列,满足sum from -∞ to ∞(|a_j|)<∞,sum from -∞ to ∞(a_j)≠0.令X_t=sum from -∞ to ∞(a_jε_(t-j))(t≥1),S_n=sum from 1 to n(X_t)(n≥1).利用由强混合序列生成的线性过程的弱收敛定理及矩不等式讨论了在bn=O(1/loglogn)的条件下,当∈→0时,P{|S_n|≥(∈+b_n)τ(2nloglogn)^(1/2)}的一类加权级数的收敛性质.