Currently,China has 32 Earth observation satellites in orbit.The satellites can provide various data such as optical,multispectral,infrared,and radar.The spatial resolution of China Earth observation satellites ranges...Currently,China has 32 Earth observation satellites in orbit.The satellites can provide various data such as optical,multispectral,infrared,and radar.The spatial resolution of China Earth observation satellites ranges from low to medium to high.The satellites possess the capability to observe across multiple spectral bands,under all weather conditions,and at all times.The data of China Earth observation satellites has been widely used in fields such as natural resource detection,environmental monitoring and protection,disaster prevention and reduction,urban planning and mapping,agricultural and forestry surveys,land survey and geological prospecting,and ocean forecasting,achieving huge social benefits.This article introduces the recent progress of Earth observation satellites in China since 2022,especially the satellite operation,data archiving,data distribution and data coverage.展开更多
Chang'E-1, the first lunar mission in China, was successfully launched on October 24,2007, which opened the prelude of China's Lunar Exploration Program. Later on, the Chang'E-2 and Chang'E-3 satellite...Chang'E-1, the first lunar mission in China, was successfully launched on October 24,2007, which opened the prelude of China's Lunar Exploration Program. Later on, the Chang'E-2 and Chang'E-3 satellites were successfully launched in 2010 and 2013, respectively. In order to achieve the science objectives, various payloads boarded the spacecraft. The scientific data from these instruments were received by Beijing and Kunming ground stations simultaneously. Up to now, about 5.628 Terabytes of raw data were received totally. A series of research results has been achieved. This paper presents a brief introduction to the main scientific results and latest progress from Chang'E-3 mission.展开更多
There have been a number of applications of satellite altimetry to seasonal and interannual sea level variability in the South China Sea. However, these applications usually exclude shallow waters along the coast, wit...There have been a number of applications of satellite altimetry to seasonal and interannual sea level variability in the South China Sea. However, these applications usually exclude shallow waters along the coast, with one of the concerns being large aliased tide-correction error. In this study the authors analyzed 14 years of merged satellite altimeter data to obtain the amplitude and phase of the semi-annual cycle and to examine the variation at the K1 alias frequency (close to the semi-annual frequency). The results indicate that the amplitude of the semi-annual cycle ranges from 3-7 cm, substantial compared with that of the annual cycle; while the amplitude at the K1 alias frequency (error of the K1 tidal correction) is essentially 1 cm only. Altimeter-derived semi-annual cycle is in good agreement with that from independent tide-gauge observations, pointing to the competent ability of satellite altimetry in observing semi-annual sea level variations in the South China Sea.展开更多
文摘Currently,China has 32 Earth observation satellites in orbit.The satellites can provide various data such as optical,multispectral,infrared,and radar.The spatial resolution of China Earth observation satellites ranges from low to medium to high.The satellites possess the capability to observe across multiple spectral bands,under all weather conditions,and at all times.The data of China Earth observation satellites has been widely used in fields such as natural resource detection,environmental monitoring and protection,disaster prevention and reduction,urban planning and mapping,agricultural and forestry surveys,land survey and geological prospecting,and ocean forecasting,achieving huge social benefits.This article introduces the recent progress of Earth observation satellites in China since 2022,especially the satellite operation,data archiving,data distribution and data coverage.
基金Supported by the NSFC under Grant(41073053)the Key Research Program of the Chinese Academy of Sciencesunder Grant(KGZD-EW-603)
文摘Chang'E-1, the first lunar mission in China, was successfully launched on October 24,2007, which opened the prelude of China's Lunar Exploration Program. Later on, the Chang'E-2 and Chang'E-3 satellites were successfully launched in 2010 and 2013, respectively. In order to achieve the science objectives, various payloads boarded the spacecraft. The scientific data from these instruments were received by Beijing and Kunming ground stations simultaneously. Up to now, about 5.628 Terabytes of raw data were received totally. A series of research results has been achieved. This paper presents a brief introduction to the main scientific results and latest progress from Chang'E-3 mission.
基金Canadian Space Agency Government Research Initiative ProgramNASA Ocean Surface Topography Science Team Program
文摘There have been a number of applications of satellite altimetry to seasonal and interannual sea level variability in the South China Sea. However, these applications usually exclude shallow waters along the coast, with one of the concerns being large aliased tide-correction error. In this study the authors analyzed 14 years of merged satellite altimeter data to obtain the amplitude and phase of the semi-annual cycle and to examine the variation at the K1 alias frequency (close to the semi-annual frequency). The results indicate that the amplitude of the semi-annual cycle ranges from 3-7 cm, substantial compared with that of the annual cycle; while the amplitude at the K1 alias frequency (error of the K1 tidal correction) is essentially 1 cm only. Altimeter-derived semi-annual cycle is in good agreement with that from independent tide-gauge observations, pointing to the competent ability of satellite altimetry in observing semi-annual sea level variations in the South China Sea.