利用中国气象局国家气象信息中心研发的中国气象局陆面数据同化系统(China Meteorological Administration Land Data Assimilation System,CLDAS)大气近地面强迫资料,驱动美国国家大气研究中心公用陆面模式(Community Land Model,CLM3....利用中国气象局国家气象信息中心研发的中国气象局陆面数据同化系统(China Meteorological Administration Land Data Assimilation System,CLDAS)大气近地面强迫资料,驱动美国国家大气研究中心公用陆面模式(Community Land Model,CLM3.5),对中国新疆地区土壤温度时空分布进行逐小时Off-line模拟(模拟时段为2009—2012年);利用国家土壤温度自动站(新疆区域105站点)数据验证CLDAS驱动场强迫下的CLM3.5模式在中国新疆地区3个土壤层(5cm、20cm和80cm)的土壤温度模拟能力。研究发现:在月变化方面,第1层(5cm)土壤温度模拟与实测值差异最大,在每年7月最大差异达5k左右;第2层(20cm)在每年7月达最大差异(3k左右),而第3层(80cm)在每年7月均模拟的很好。造成这种现象的原因可能因为新疆地区7月前后浅层土壤温度变化剧烈,温度白天最高可达300K以上,昼夜温差大,导致模式不能很好抓住浅层土壤温度的变化趋势。研究还发现,在80cm土壤深度,模式在1月、12月的模拟结果均较前两层差。在日变化方面,研究发现:较浅的两层(5cm和20cm)土壤温度模拟值在夏季和秋季均较差。与月变化模拟结果类似的是,80cm土壤层日变化在1、12月模拟较差,然而在其他时段却模拟的很好。在小时变化方面,分析发现:第1层土壤(5cm)模拟结果在每年的1—4月及9—11月的全天(即24 h),模式也会有不同的偏差:其中,在03UTC—21UTC之间主要表现为模式结果比观测结果偏高,而在日内21UTC—00UTC主要表现为模拟结果偏小。在每年的5—8月,全天模拟值都偏小,其中在09UTC达当日最大值。而距离第2层(20cm)处的土壤温度模拟值在大部分月份都偏差较小(-1K至1k之间),并在日内12UTC偏差达到当日最大值。研究发现,在土壤20cm处,模式模拟的最大值较观测值提前,而第3层(80cm)的土壤温度基本不受日内变化影响,表现较为平稳。造成这种影响的原因可能是因为新疆地区5—8月、9—11月为昼夜温差大,深层土壤温度较浅层土壤温度温差变化小,这也造成了模式对于浅层土壤模拟较深层差的主要原因。总体研究表明:CLDAS驱动场强迫下的CLM3.5模式可较为精确的模拟中国新疆地区多年平均土壤温度时空分布,并较为准确的反映中国新疆地区土壤温度的小时、日、月及年际的变化规律。模式浅温度模拟不好的原因可能与模式参数化方案及地表参数有关,后期将继续修正该问题。展开更多
积雪因为其特定的属性在气候变化和水文循环中扮演着重要角色,在大气和陆面之间起到了调节能量和水交换的显著作用,而陆面驱动数据的质量直接决定着模式对积雪的模拟效果。本文采用CLDAS(CMA Land Data Assimilation System)和改进后的...积雪因为其特定的属性在气候变化和水文循环中扮演着重要角色,在大气和陆面之间起到了调节能量和水交换的显著作用,而陆面驱动数据的质量直接决定着模式对积雪的模拟效果。本文采用CLDAS(CMA Land Data Assimilation System)和改进后的降水驱动(CLDAS-Prcp)分别驱动Noah3.6陆面模式对积雪变量进行模拟,并对中国主要的积雪区东北区域、新疆区域、青藏高原区域的积雪覆盖率、雪深、雪水当量的模拟效果进行了评估。结果表明,CLDAS-Prcp改善了原有驱动在冬季由于低估降水所造成的模拟积雪量偏少的情况;东北区域模拟结果与观测的时间变率最为一致,积雪覆盖率、雪深、雪水当量的相关系数分别为0.42,0.78,0.93;而雪水当量的改进效果最明显,均方根误差和偏差分别减小了54.8%和83.1%,相关系数提高了0.47;同时,CLDAS-Prcp不仅能反映积雪变量的年际变率,而且能够较准确地反映出强度较大的突发降雪事件。展开更多
文摘利用中国气象局国家气象信息中心研发的中国气象局陆面数据同化系统(China Meteorological Administration Land Data Assimilation System,CLDAS)大气近地面强迫资料,驱动美国国家大气研究中心公用陆面模式(Community Land Model,CLM3.5),对中国新疆地区土壤温度时空分布进行逐小时Off-line模拟(模拟时段为2009—2012年);利用国家土壤温度自动站(新疆区域105站点)数据验证CLDAS驱动场强迫下的CLM3.5模式在中国新疆地区3个土壤层(5cm、20cm和80cm)的土壤温度模拟能力。研究发现:在月变化方面,第1层(5cm)土壤温度模拟与实测值差异最大,在每年7月最大差异达5k左右;第2层(20cm)在每年7月达最大差异(3k左右),而第3层(80cm)在每年7月均模拟的很好。造成这种现象的原因可能因为新疆地区7月前后浅层土壤温度变化剧烈,温度白天最高可达300K以上,昼夜温差大,导致模式不能很好抓住浅层土壤温度的变化趋势。研究还发现,在80cm土壤深度,模式在1月、12月的模拟结果均较前两层差。在日变化方面,研究发现:较浅的两层(5cm和20cm)土壤温度模拟值在夏季和秋季均较差。与月变化模拟结果类似的是,80cm土壤层日变化在1、12月模拟较差,然而在其他时段却模拟的很好。在小时变化方面,分析发现:第1层土壤(5cm)模拟结果在每年的1—4月及9—11月的全天(即24 h),模式也会有不同的偏差:其中,在03UTC—21UTC之间主要表现为模式结果比观测结果偏高,而在日内21UTC—00UTC主要表现为模拟结果偏小。在每年的5—8月,全天模拟值都偏小,其中在09UTC达当日最大值。而距离第2层(20cm)处的土壤温度模拟值在大部分月份都偏差较小(-1K至1k之间),并在日内12UTC偏差达到当日最大值。研究发现,在土壤20cm处,模式模拟的最大值较观测值提前,而第3层(80cm)的土壤温度基本不受日内变化影响,表现较为平稳。造成这种影响的原因可能是因为新疆地区5—8月、9—11月为昼夜温差大,深层土壤温度较浅层土壤温度温差变化小,这也造成了模式对于浅层土壤模拟较深层差的主要原因。总体研究表明:CLDAS驱动场强迫下的CLM3.5模式可较为精确的模拟中国新疆地区多年平均土壤温度时空分布,并较为准确的反映中国新疆地区土壤温度的小时、日、月及年际的变化规律。模式浅温度模拟不好的原因可能与模式参数化方案及地表参数有关,后期将继续修正该问题。
文摘积雪因为其特定的属性在气候变化和水文循环中扮演着重要角色,在大气和陆面之间起到了调节能量和水交换的显著作用,而陆面驱动数据的质量直接决定着模式对积雪的模拟效果。本文采用CLDAS(CMA Land Data Assimilation System)和改进后的降水驱动(CLDAS-Prcp)分别驱动Noah3.6陆面模式对积雪变量进行模拟,并对中国主要的积雪区东北区域、新疆区域、青藏高原区域的积雪覆盖率、雪深、雪水当量的模拟效果进行了评估。结果表明,CLDAS-Prcp改善了原有驱动在冬季由于低估降水所造成的模拟积雪量偏少的情况;东北区域模拟结果与观测的时间变率最为一致,积雪覆盖率、雪深、雪水当量的相关系数分别为0.42,0.78,0.93;而雪水当量的改进效果最明显,均方根误差和偏差分别减小了54.8%和83.1%,相关系数提高了0.47;同时,CLDAS-Prcp不仅能反映积雪变量的年际变率,而且能够较准确地反映出强度较大的突发降雪事件。