期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
智能移动终端涉密信息监测系统 被引量:4
1
作者 王本钰 顾益军 彭舒凡 《科学技术与工程》 北大核心 2022年第6期2317-2325,共9页
网络高度发达的信息时代,防止涉密信息被泄露是一件非常重要的任务,尤其是对于政府、军队、公安等重点单位。传统的涉密信息监测系统往往是安装在主机等终端中,无法对于通过手机等智能移动终端偷拍涉密图片或者通过聊天软件上传涉密图... 网络高度发达的信息时代,防止涉密信息被泄露是一件非常重要的任务,尤其是对于政府、军队、公安等重点单位。传统的涉密信息监测系统往往是安装在主机等终端中,无法对于通过手机等智能移动终端偷拍涉密图片或者通过聊天软件上传涉密图片的行为无法进行有效的制止。针对这个问题,设计了一种将CTPN文本检测算法、光学字符识别技术(optical character recognition,OCR)与场景识别、图片传输监控相结合的智能移动终端涉密信息监测系统,可广泛应用于Android移动平台中。该系统通过全局扫描,实时相机监察,社交管控三防一体对失泄密行为进行监控监察,有效防止失泄密事故案件的发生。测试结果显示,该系统不仅可以准确识别涉密图片、监测涉密行为并且处理速度快、占用内存空间小,可以满足涉密单位的基本需求。 展开更多
关键词 CTPN文本检测算法 光学字符识别技术(optical character recognition OCR) 智能移动终端 监控监察
在线阅读 下载PDF
Unsupervised feature selection based on Markov blanket and particle swarm optimization 被引量:2
2
作者 Yintong Wang Jiandong Wang +1 位作者 Hao Liao Haiyan Chen 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2017年第1期151-161,共11页
Feature selection plays an important role in data mining and recognition, especially in the large scale text, image and biological data. Specifically, the class label information is unavailable to guide the selection ... Feature selection plays an important role in data mining and recognition, especially in the large scale text, image and biological data. Specifically, the class label information is unavailable to guide the selection of minimal feature subset in unsupervised feature selection, which is challenging and interesting. An unsupervised feature selection based on Markov blanket and particle swarm optimization is proposed named as UFSMB-PSO. The proposed method seeks to find the high-quality feature subset through multi-particles' cooperation of particle swarm optimization without using any learning algorithms. Moreover, the features' relevance will be computed based on an information metric of relevance gain, which provides an information theoretical foundation for finding the minimization of the redundancy between features. Our results on several benchmark datasets demonstrate that UFSMB-PSO can achieve significant improvement over state of the art unsupervised methods. © 1990-2011 Beijing Institute of Aerospace Information. 展开更多
关键词 character recognition Data mining Feature extraction Information theory
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部