滚动轴承的工作状况关系到使用滚动轴承的机械能否正常运行,预测轴承的剩余使用寿命(RUL)是避免机械系统失效的关键。针对传统的轴承使用寿命预测方法无法自适应调节特征权重、提取有用特征,造成预测值误差过大的问题,提出了一种带有卷...滚动轴承的工作状况关系到使用滚动轴承的机械能否正常运行,预测轴承的剩余使用寿命(RUL)是避免机械系统失效的关键。针对传统的轴承使用寿命预测方法无法自适应调节特征权重、提取有用特征,造成预测值误差过大的问题,提出了一种带有卷积块注意力模块(CBAM)的动态残差网络(Dy Res Net)用于预测轴承RUL。对振动信号进行快速傅里叶变换求得频域累积幅值特征,在动态残差网络中加入CBAM模块,并利用压缩激励模块进行特征细化得出预测结果,使用公开轴承数据集对所提模型进行评估。实验表明:与其他模型相比,Dy Res Net-CBAM模型能够充分提取特征信息,对轴承RUL预测的准确度高于其他模型。展开更多
在移动通信网络快速发展的背景下,蜂窝流量预测对于网络规划、优化和资源管理具有重大意义。针对蜂窝流量数据的复杂性和非线性特点,提出一种基于二次分解的混合神经网络蜂窝流量预测方法。首先,采用自适应噪声的完备集合经验模式分解(c...在移动通信网络快速发展的背景下,蜂窝流量预测对于网络规划、优化和资源管理具有重大意义。针对蜂窝流量数据的复杂性和非线性特点,提出一种基于二次分解的混合神经网络蜂窝流量预测方法。首先,采用自适应噪声的完备集合经验模式分解(complete ensemble empirical mode decomposition with adaptive noise,CEEMDAN)方法将原始流量分解为多个子序列,利用K-Shape聚类算法重构为频率序列和趋势序列。为了更细致地揭示数据的内在结构,运用变分模态分解(variational mode decomposition,VMD)方法对频率序列进行二次分解,生成多维频率序列。然后,将一维趋势序列和多维频率序列分别输入至局部特征提取模块,其中单通道特征提取层利用一维卷积神经网络(one-dimensional convolution neural network,1DCNN)提取一维趋势序列的局部特征,而多通道特征提取层则结合卷积块注意力模块(convolutional block attention module,CBAM)捕捉多维频率序列中的关键信息。紧接着将提取到的特征向量分别输入到时序信息学习模块中,利用双向长短时记忆(bidirectional long short term memory,BiLSTM)网络和注意力机制学习时序变化规律,完成预测流量的输出。最后,通过对趋势序列和频率序列的预测结果求和,实现对蜂窝流量的准确预测。为了验证所提方法的有效性,利用公开数据集进行实验验证,并与多种不同方法进行对比。实验结果表明,所提预测方法展现出更优的预测性能,为蜂窝网络的智能管理和优化提供了有力支持。展开更多
文摘滚动轴承的工作状况关系到使用滚动轴承的机械能否正常运行,预测轴承的剩余使用寿命(RUL)是避免机械系统失效的关键。针对传统的轴承使用寿命预测方法无法自适应调节特征权重、提取有用特征,造成预测值误差过大的问题,提出了一种带有卷积块注意力模块(CBAM)的动态残差网络(Dy Res Net)用于预测轴承RUL。对振动信号进行快速傅里叶变换求得频域累积幅值特征,在动态残差网络中加入CBAM模块,并利用压缩激励模块进行特征细化得出预测结果,使用公开轴承数据集对所提模型进行评估。实验表明:与其他模型相比,Dy Res Net-CBAM模型能够充分提取特征信息,对轴承RUL预测的准确度高于其他模型。
文摘在移动通信网络快速发展的背景下,蜂窝流量预测对于网络规划、优化和资源管理具有重大意义。针对蜂窝流量数据的复杂性和非线性特点,提出一种基于二次分解的混合神经网络蜂窝流量预测方法。首先,采用自适应噪声的完备集合经验模式分解(complete ensemble empirical mode decomposition with adaptive noise,CEEMDAN)方法将原始流量分解为多个子序列,利用K-Shape聚类算法重构为频率序列和趋势序列。为了更细致地揭示数据的内在结构,运用变分模态分解(variational mode decomposition,VMD)方法对频率序列进行二次分解,生成多维频率序列。然后,将一维趋势序列和多维频率序列分别输入至局部特征提取模块,其中单通道特征提取层利用一维卷积神经网络(one-dimensional convolution neural network,1DCNN)提取一维趋势序列的局部特征,而多通道特征提取层则结合卷积块注意力模块(convolutional block attention module,CBAM)捕捉多维频率序列中的关键信息。紧接着将提取到的特征向量分别输入到时序信息学习模块中,利用双向长短时记忆(bidirectional long short term memory,BiLSTM)网络和注意力机制学习时序变化规律,完成预测流量的输出。最后,通过对趋势序列和频率序列的预测结果求和,实现对蜂窝流量的准确预测。为了验证所提方法的有效性,利用公开数据集进行实验验证,并与多种不同方法进行对比。实验结果表明,所提预测方法展现出更优的预测性能,为蜂窝网络的智能管理和优化提供了有力支持。