Climate change is the most severe ecological challenge faced by the world today.Forests,the dominant component of terrestrial ecosystems,play a critical role in mitigating climate change due to their powerful carbon s...Climate change is the most severe ecological challenge faced by the world today.Forests,the dominant component of terrestrial ecosystems,play a critical role in mitigating climate change due to their powerful carbon sequestration capabilities.Meanwhile,climate change has also become a major factor affecting the sustainable management of forest ecosystems.Climate-Smart Forestry(CSF)is an emerging concept in sustainable forest management.By utilizing advanced technologies,such as information technology and artificial intelligence,CSF aims to develop innovative and proactive forest management methods and decision-making systems to address the challenges of climate change.CSF aims to enhance forest ecosystem resilience(i.e.,maintain a condition where,even when the state of the ecosystem changes,the ecosystem functions do not deteriorate)through climate change adaptation,improve the mitigation capabilities of forest ecosystems to climate change,maintain high,stable,and sustainable forest productivity and ecosystem services,and ultimately achieve harmonious development between humans and nature.This concept paper:(1)discusses the emergence and development of CSF,which integrates Ecological Forestry,Carbon Forestry,and Smart Forestry,and proposes the concept of CSF;(2)analyzes the goals of CSF in improving forest ecosystem stability,enhancing forest ecosystem carbon sequestration capacity,and advocating the application and development of new technologies in CSF,including artificial intelligence,robotics,Light Detection and Ranging,and forest digital twin;(3)presents the latest practices of CSF based on prior research on forest structure and function using new generation information technologies at Qingyuan Forest,China.From these practices and reflections,we suggested the development direction of CSF,including the key research topics and technological advancement.展开更多
Background:Climate change is accelerating alterations in forest species and community composition worldwide,especially following extreme events like severe droughts and windstorms.Understanding these effects on subtro...Background:Climate change is accelerating alterations in forest species and community composition worldwide,especially following extreme events like severe droughts and windstorms.Understanding these effects on subtropical forests is crucial for conservation and forest management,but it remains unclear whether the impacts are stochastic or deterministic.Methods:We analyzed a unique dataset from a 1-ha permanent plot in a subtropical monsoon broadleaf evergreen forest in China,monitored over 26 years with six surveys from 1994 to 2020.The forest has been free from anthropogenic disturbances for over 400 years.In each survey,we measured all trees with a diameter at breast height(DBH)≥1 cm,and recorded 11 plant functional traits relating to photosynthesis,wood properties,water use,and nutrient dynamics.Using this data,we calculated species and trait dispersion,assessing short-term(~5years)and long-term(26 years)trends in species and trait composition following severe droughts and windstorm events.Results:Severe droughts,and subsequent droughts,increased both species and trait dispersion,while species composition converged,and trait dispersion remained relatively stable throughout the recovery period.Windstorm events led to increased species dispersion but decreased trait dispersion.We observed a clear directional shift in both species and trait composition under these climatic stressors,with a more pronounced increase in trait dispersion compared to species dispersion.Conclusion:In the short term(~5 years),severe droughts and windstorms increased species composition divergence,while trait composition responses varied.Over 26 years,deterministic processes mainly drove community composition changes,especially for trait composition,although stochastic processes also played a role.These findings suggest enhancing forest resilience to climatic stressors by protecting adaptive species or increasing species diversity in management practices.展开更多
Deforestation is one of the most serious environmental problems facing humankind.It continues to escalate rapidly across many regions of the world,thereby deteriorating the forest soil quality.This has prompted a larg...Deforestation is one of the most serious environmental problems facing humankind.It continues to escalate rapidly across many regions of the world,thereby deteriorating the forest soil quality.This has prompted a large number of field-based studies aimed at understanding the impacts of deforestation on soil properties.However,the lack of comprehensive meta-analyses that utilized these studies has limited our deeper understanding of how different soil properties,including the soil organic carbon(SOC)pool,respond to deforestation.To address this critical knowledge gap,we conducted a meta-analysis of 144 studies to explore the impacts of deforestation on soil chemical,physical,and biological properties,with special emphasis on the long-term changes in SOC,such as concentrations,stocks,and sequestration.The results revealed that deforestation significantly decreased soil organic matter,electrical conductivity,and base saturation by 52%,50%,and 98%,respectively.While deforestation increased soil total nitrogen content and decreased available phosphorus content by 51%and 99%,respectively,it resulted in slight decreases in some chemical properties,including soil pH(1%)and base cations(1%–13%).Deforestation significantly increased bulk density by 27%and soil erosion by 47%,but significantly decreased soil aggregate stability by 39%and saturated hydraulic conductivity by 63%.Soil microbial biomass C and N concentrations and enzyme activities were significantly decreased as a consequence of deforestation.Soil biological properties were much more affected by deforestation than soil physical and chemical properties.Regarding the SOC,the land use conversion from forest to pasture significantly increased SOC concentrations,stocks,and sequestration rates(11%–13%),whereas the land use conversions from forest to both plantation and cropland significantly decreased SOC concentrations,stocks,and sequestration rates(10%–43%).This observed decline in SOC accumulations decreased with increasing years after deforestation.The SOC dynamics following deforestation were predominantly regulated by microbial biomass concentrations,dehydrogenase activity,soil erosion,saturated hydraulic conductivity,aggregate stability,as well as concentrations of total organic carbon,total nitrogen,total phosphorus and organic matter.The present meta-analytical study provides compelling evidence that deforestation can induce profound changes in soil characteristics,including soil C contents,and has significant implications for soil health sustainability and climate change mitigation.展开更多
Rapid advances in thermal management technology and the increasing need for multi-energy conversion have placed stringent energy efficiency requirements on next-generation shape-stable composite phase change materials...Rapid advances in thermal management technology and the increasing need for multi-energy conversion have placed stringent energy efficiency requirements on next-generation shape-stable composite phase change materials(PCMs).Magnetically-responsive phase change thermal storage materials are considered an emerging concept for energy storage systems,enabling PCMs to perform unprecedented functions(such as green energy utilization,magnetic thermotherapy,drug release,etc.).The combination of multifunctional magnetic nanomaterials and PCMs is a milestone in the creation of advanced multifunctional composite PCMs.However,a timely and comprehensive review of composite PCMs based on magnetic nanoparticle modification is still missing.Herein,we furnish an exhaustive exposition elucidating the cutting-edge advancements in magnetically responsive composite PCMs.We delve deeply into the multifarious roles assumed by distinct nanoparticles within composite PCMs of varying dimensions,meticulously scrutinizing the intricate interplay between their architectures and thermophysical attributes.Moreover,we prognosticate future research trajectories,delineate alternative stratagems,and illuminate prospective avenues.This review is intended to stimulate broader academic interest in interdisciplinary fields and provide valuable insights into the development of next-generation magnetically-responsive composite PCMs.展开更多
Aiming at the gas discharge problem in electric aircraft,this work studies the gas discharge characteristics at low-temperature sub-atmospheric pressure.A gas discharge shooting platform was built,and the discharge pr...Aiming at the gas discharge problem in electric aircraft,this work studies the gas discharge characteristics at low-temperature sub-atmospheric pressure.A gas discharge shooting platform was built,and the discharge process was photographed by intensified charge-coupled device(ICCD).A two-dimensional axisymmetric model of needle-plate electrode gas discharge was established,and three sets of Helmholtz equations were used to solve the photoionization.The results show that under the same voltage,the electric field intensity in the discharge process increases first,then decreases and finally increases again.The discharge speed increases with the increase of altitude,and the electron density in the streamer decreases with the increase of altitude.The development speed of the streamer in the middle stage is higher than that in the early stage,and the speed increases more obviously with the increase of altitude.The development speed of the streamer in the later stage is lower than that in the middle stage,but with the increase of altitude,the development speed of the streamer in the later stage is higher than that in the middle stage.展开更多
Quantum interferometric power(IP), a discordlike measure, plays an important role in quantum metrology. We study the dynamics of IP for two-qubit X-shape states under different noisy environments. Our study shows that...Quantum interferometric power(IP), a discordlike measure, plays an important role in quantum metrology. We study the dynamics of IP for two-qubit X-shape states under different noisy environments. Our study shows that IP exhibits sudden change, and one side quantum channel is enough for the occurrence of a sudden change of IP. In particular, we show that the initial state having no sudden change of quantum discord exhibits a sudden change of IP under the dynamics of amplitude noise, but the converse is not true. Besides, we also investigate the dynamics of IP under two different kinds of composite noises. Our results also confirm that sudden change of IP occurs under such composite noises.展开更多
Considering the three typical phase-change related rock mechanics phenomena during drilling and production in oil and gas reservoirs,which include phase change of solid alkane-related mixtures upon heating,sand liquef...Considering the three typical phase-change related rock mechanics phenomena during drilling and production in oil and gas reservoirs,which include phase change of solid alkane-related mixtures upon heating,sand liquefaction induced by sudden pressure release of the over-pressured sand body,and formation collapse due to gasification of pore fillings from pressure reduction,this study first systematically analyzes the progress of theoretical understanding,experimental methods,and mathematical representation,then discusses the engineering application scenarios corresponding to the three phenomena and reveals the mechanical principles and application effectiveness.Based on these research efforts,the study further discusses the significant challenges,potential developmental trends,and research approaches that require urgent exploration.The findings disclose that various phase-related rock mechanics phenomena require specific experimental and mathematical methods that can produce multi-field coupling mechanical mechanisms,which will eventually instruct the control on resource exploitation,evaluation on disaster level,and analysis of formation stability.To meet the development needs of the principle,future research efforts should focus on mining more phase-change related rock mechanics phenomena during oil and gas resources exploitation,developing novel experimental equipment,and using techniques of artificial intelligence and digital twins to implement real-time simulation and dynamic visualization of phase-change related rock mechanics.展开更多
Based on recent advancements in shale oil exploration within the Ordos Basin,this study presents a comprehensive investigation of the paleoenvironment,lithofacies assemblages and distribution,depositional mechanisms,a...Based on recent advancements in shale oil exploration within the Ordos Basin,this study presents a comprehensive investigation of the paleoenvironment,lithofacies assemblages and distribution,depositional mechanisms,and reservoir characteristics of shale oil of fine-grained sediment deposition in continental freshwater lacustrine basins,with a focus on the Chang 7_(3) sub-member of Triassic Yanchang Formation.The research integrates a variety of exploration data,including field outcrops,drilling,logging,core samples,geochemical analyses,and flume simulation.The study indicates that:(1)The paleoenvironment of the Chang 7_(3) deposition is characterized by a warm and humid climate,frequent monsoon events,and a large water depth of freshwater lacustrine basin.The paleogeomorphology exhibits an asymmetrical pattern,with steep slopes in the southwest and gentle slopes in the northeast,which can be subdivided into microgeomorphological units,including depressions and ridges in lakebed,as well as ancient channels.(2)The Chang 7_(3) sub-member is characterized by a diverse array of fine-grained sediments,including very fine sandstone,siltstone,mudstone and tuff.These sediments are primarily distributed in thin interbedded and laminated arrangements vertically.The overall grain size of the sandstone predominantly falls below 62.5μm,with individual layer thicknesses of 0.05–0.64 m.The deposits contain intact plant fragments and display various sedimentary structure,such as wavy bedding,inverse-to-normal grading sequence,and climbing ripple bedding,which indicating a depositional origin associated with density flows.(3)Flume simulation experiments have successfully replicated the transport processes and sedimentary characteristics associated with density flows.The initial phase is characterized by a density-velocity differential,resulting in a thicker,coarser sediment layer at the flow front,while the upper layers are thinner and finer in grain size.During the mid-phase,sliding water effects cause the fluid front to rise and facilitate rapid forward transport.This process generates multiple“new fronts”,enabling the long-distance transport of fine-grained sandstones,such as siltstone and argillaceous siltstone,into the center of the lake basin.(4)A sedimentary model primarily controlled by hyperpynal flows was established for the southwestern part of the basin,highlighting that the frequent occurrence of flood events and the steep slope topography in this area are primary controlling factors for the development of hyperpynal flows.(5)Sandstone and mudstone in the Chang 7_(3) sub-member exhibit micro-and nano-scale pore-throat systems,shale oil is present in various lithologies,while the content of movable oil varies considerably,with sandstone exhibiting the highest content of movable oil.(6)The fine-grained sediment complexes formed by multiple episodes of sandstones and mudstones associated with density flow in the Chang 7_(3) formation exhibit characteristics of“overall oil-bearing with differential storage capacity”.The combination of mudstone with low total organic carbon content(TOC)and siltstone is identified as the most favorable exploration target at present.展开更多
Energy storage and conservation are receiving increased attention due to rising global energy demands.Therefore,the development of energy storage materials is crucial.Thermal energy storage(TES)systems based on phase ...Energy storage and conservation are receiving increased attention due to rising global energy demands.Therefore,the development of energy storage materials is crucial.Thermal energy storage(TES)systems based on phase change materials(PCMs)have increased in prominence over the past two decades,not only because of their outstanding heat storage capacities but also their superior thermal energy regulation capability.However,issues such as leakage and low thermal conductivity limit their applicability in a variety of settings.Carbon-based materials such as graphene and its derivatives can be utilized to surmount these obstacles.This study examines the recent advancements in graphene-based phase change composites(PCCs),where graphene-based nanostructures such as graphene,graphene oxide(GO),functionalized graphene/GO,and graphene aerogel(GA)are incorporated into PCMs to substantially enhance their shape stability and thermal conductivity that could be translated to better storage capacity,durability,and temperature response,thus boosting their attractiveness for TES systems.In addition,the applications of these graphene-based PCCs in various TES disciplines,such as energy conservation in buildings,solar utilization,and battery thermal management,are discussed and summarized.展开更多
Leading national space exploration agencies and private enterprises are actively engaged in lunar exploration initiatives to accomplish manned lunar landings and establish permanent lunar bases in the forthcoming year...Leading national space exploration agencies and private enterprises are actively engaged in lunar exploration initiatives to accomplish manned lunar landings and establish permanent lunar bases in the forthcoming years.With limited access to lunar surface materials on Earth,lunar regolith simulants are crucial for lunar exploration research.The Chang’e-5(CE-5)samples have been characterized by state-of-the-art laboratory equipment,providing a unique opportunity to develop a high-quality lunar regolith simulant.We have prepared a high-fidelity PolyU-1 simulant by pulverizing,desiccating,sieving,and blending natural mineral materials on Earth based on key physical,mineral,and chemical characteristics of CE-5 samples.The results showed that the simulant has a high degree of consistency with the CE-5 samples in terms of the particle morphology,mineral and chemical composition.Direct shear tests were conducted on the simulant,and the measured internal friction angle and cohesion values can serve as references for determining the mechanical properties of CE-5 lunar regolith.The PolyU-1 simulant can contribute to experimental studies involving lunar regolith,including the assessment of interaction between rovers and lunar regolith,as well as the development of in-situ resource utilization(ISRU)technologies.展开更多
The severe dependence of traditional phase change materials(PCMs)on the temperature-response and lattice deficiencies in versatility cannot satisfy demand for using such materials in complex application scenarios.Here...The severe dependence of traditional phase change materials(PCMs)on the temperature-response and lattice deficiencies in versatility cannot satisfy demand for using such materials in complex application scenarios.Here,we introduced metal ions to induce the self-assembly of MXene nanosheets and achieve their ordered arrangement by combining suction filtration and rapid freezing.Subsequently,a series of MXene/K^(+)/paraffin wax(PW)phase change composites(PCCs)were obtained via vacuum impregnation in molten PW.The prepared MXene-based PCCs showed versatile applications from macroscale technologies,successfully transforming solar,electric,and magnetic energy into thermal energy stored as latent heat in the PCCs.Moreover,due to the absence of binder in the MXene-based aerogel,MK3@PW exhibits a prime solar-thermal conversion efficiency(98.4%).Notably,MK3@PW can further convert the collected heat energy into electric energy through thermoelectric equipment and realize favorable solar-thermal-electric conversion(producing 206 mV of voltage with light radiation intensity of 200 mw cm^(−2)).An excellent Joule heat performance(reaching 105℃with an input voltage of 2.5 V)and responsive magnetic-thermal conversion behavior(a charging time of 11.8 s can achieve a thermal insulation effect of 285 s)for contactless thermotherapy were also demonstrated by the MK3@PW.Specifically,as a result of the ordered arrangement of MXene nanosheet self-assembly induced by potassium ions,MK3@PW PCC exhibits a higher electromagnetic shielding efficiency value(57.7 dB)than pure MXene aerogel/PW PCC(29.8 dB)with the same MXene mass.This work presents an opportunity for the multi-scene response and practical application of PCMs that satisfy demand of next-generation multifunctional PCCs.展开更多
Developing technologies that can be applied simultaneously in battery thermal management(BTM)and thermal runaway(TR)mitigation is significant to improving the safety of lithium-ion battery systems.Inorganic phase chan...Developing technologies that can be applied simultaneously in battery thermal management(BTM)and thermal runaway(TR)mitigation is significant to improving the safety of lithium-ion battery systems.Inorganic phase change material(PCM)with nonflammability has the potential to achieve this dual function.This study proposed an encapsulated inorganic phase change material(EPCM)with a heat transfer enhancement for battery systems,where Na_(2)HPO_(4)·12H_(2)O was used as the core PCM encapsulated by silica and the additive of carbon nanotube(CNT)was applied to enhance the thermal conductivity.The microstructure and thermal properties of the EPCM/CNT were analyzed by a series of characterization tests.Two different incorporating methods of CNT were compared and the proper CNT adding amount was also studied.After preparation,the battery thermal management performance and TR propagation mitigation effects of EPCM/CNT were further investigated on the battery modules.The experimental results of thermal management tests showed that EPCM/CNT not only slowed down the temperature rising of the module but also improved the temperature uniformity during normal operation.The peak battery temperature decreased from 76℃to 61.2℃at 2 C discharge rate and the temperature difference was controlled below 3℃.Moreover,the results of TR propagation tests demonstrated that nonflammable EPCM/CNT with good heat absorption could work as a TR barrier,which exhibited effective mitigation on TR and TR propagation.The trigger time of three cells was successfully delayed by 129,474 and 551 s,respectively and the propagation intervals were greatly extended as well.展开更多
To clarify the formation and distribution of feldspar dissolution pores and predict the distribution of high-quality reservoir in gravity flow sandstone of the 7^(th) member of Triassic Yanchang Formation(Chang 7 Memb...To clarify the formation and distribution of feldspar dissolution pores and predict the distribution of high-quality reservoir in gravity flow sandstone of the 7^(th) member of Triassic Yanchang Formation(Chang 7 Member)in the Ordos Basin,thin sections,scanning electron microscopy,energy spectrum analysis,X-ray diffraction whole rock analysis,and dissolution experiments are employed in this study to investigate the characteristics and control factors of feldspar dissolution pores.The results show that:(1)Three types of diagenetic processes are observed in the feldspar of Chang 7 sandstone in the study area:secondary overgrowth of feldspar,replacement by clay and calcite,and dissolution of detrital feldspar.(2)The feldspar dissolution of Chang 7 tight sandstone is caused by organic acid,and is further affected by the type of feldspar,the degree of early feldspar alteration,and the buffering effect of mica debris on organic acid.(3)Feldspars have varying degrees of dissolution.Potassium feldspar is more susceptible to dissolution than plagioclase.Among potassium feldspar,orthoclase is more soluble than microcline,and unaltered feldspar is more soluble than early kaolinized or sericitized feldspar.(4)The dissolution experiment demonstrated that the presence of mica can hinder the dissolution of feldspar.Mica of the same mass has a significantly stronger capacity to consume organic acids than feldspar.(5)Dissolution pores in feldspar of Chang 7 Member are more abundant in areas with low mica content,and they improve the reservoir physical properties,while in areas with high mica content,the number of feldspar dissolution pores decreases significantly.展开更多
Tree radial growth can have significantly differ-ent responses to climate change depending on the environ-ment.To elucidate the effects of climate on radial growth and stable carbon isotope(δ^(13)C)fractionation of Q...Tree radial growth can have significantly differ-ent responses to climate change depending on the environ-ment.To elucidate the effects of climate on radial growth and stable carbon isotope(δ^(13)C)fractionation of Qing-hai spruce(Picea crassifolia),a widely distributed native conifer in northwestern China in different environments,we developed chronologies for tree-ring widths and δ^(13)C in trees on the southern and northern slopes of the Qilian Mountains,and analysed the relationship between these tree-ring variables and major climatic factors.Tree-ring widths were strongly influenced by climatic factors early in the growing season,and the radial growth in trees on the northern slopes was more sensitive to climate than in trees on the southern.Tree-ring δ^(13)C was more sensitive to climate than radial growth.δ^(13)C fractionation was mainly influenced by summer temperature and precipitation early in the growing season.Stomatal conductance more strongly limited stable carbon isotope fractionation in tree rings than photosynthetic rate did.The response between tree rings and climate in mountains gradually weakened as climate warmed.Changes in radial growth and stable carbon isotope fractionation of P.crassifolia in response to climate in the Qilian Mountains may be further complicated by continued climate change.展开更多
There has been an increasing recognition of the crucial role of forests, responsible for sequestering atmospheric CO_(2), as a moral imperative for mitigating the pace of climate change. The complexity of evaluating c...There has been an increasing recognition of the crucial role of forests, responsible for sequestering atmospheric CO_(2), as a moral imperative for mitigating the pace of climate change. The complexity of evaluating climate change impacts on forest carbon and water dynamics lies in the diverse acclimations of forests to changing environments. In this study, we assessed two of the most common acclimation traits, namely leaf area index and the maximum rate of carboxylation(V_(cmax)), to explore the potential acclimation pathways of Pinus koraiensis under climate change. We used a mechanistic and process-based ecohydrological model applied to a P. koraiensis forest in Mt. Taehwa, South Korea. We conducted numerical investigations into the impacts of(i) Shared Socioeconomic Pathways 2–4.5(SSP2-4.5) and 5–8.5(SSP5-8.5),(ii) elevated atmospheric CO_(2) and temperature, and(iii) acclimations of leaf area index and V_(cmax)on the carbon and water dynamics of P. koraiensis. We found that there was a reduction in net primary productivity(NPP) under the SSP2-4.5 scenario, but not under SSP5-8.5, compared to the baseline, due to an imbalance between increases in atmospheric CO_(2) and temperature. A decrease in leaf area index and an increase in V_(cmax)of P. koraiensis were expected if acclimations were made to reduce its leaf temperature. Under such acclimation pathways, it would be expected that the well-known CO_(2) fertilizer effects on NPP would be attenuated.展开更多
The mineralogical development and diagenetic sequence of lacustrine shales in the Chang 7 Member of the Yanchang Formation in the Ordos Basin are detailed studied.A model of their depositional system and a diagenetic ...The mineralogical development and diagenetic sequence of lacustrine shales in the Chang 7 Member of the Yanchang Formation in the Ordos Basin are detailed studied.A model of their depositional system and a diagenetic diagram are proposed in this study.Through detailed petrographic,mineralogical,and elemental analyses,four distinct shale types are identified:argillaceous shale,siliceous shale,calcareous shale,and carbonate,clay,and silt-bearing shale.The main diagenetic process in argillaceous shale is the transformation of illite to smectite,negatively impacting shale porosity.Siliceous shale undergoes carbonate cementation and quartz dissolution,contributing to increased porosity,particularly in mesopores.Calcareous shale experiences diagenesis characterised by carbonate formation and dissolution,with a prevalence of siderite.In carbonate,clay,and silt-bearing shale,the dissolution of K-feldspar contributes to illitization of kaolinite.Argillaceous shale,characterised by more clay minerals and lower mesopore volume,is identified as a potential hydrocarbon seal.Siliceous shale,with the highest pore volume and abundant inter-mineral pores,emerges as a promising shale oil reservoir.These findings contribute to a comprehensive understanding of shale properties,aiding in the prediction of shale oil exploration potential in the studied area.展开更多
Temporal changes in the relationship between tree growth and climate have been observed in numerous forests across the world.The patterns and the possible regu-lators(e.g.,forest community structure)of such changes ar...Temporal changes in the relationship between tree growth and climate have been observed in numerous forests across the world.The patterns and the possible regu-lators(e.g.,forest community structure)of such changes are,however,not well understood.A vegetation survey and analyses of growth-climate relationships for Abies georgei var.Smithii(Smith fir)forests were carried along an altitudi-nal gradient from 3600 to 4200 m on Meili Snow Mountain,southeastern Tibetan Plateau.The results showed that the associations between growth and temperature have declined since the 1970s over the whole transect,while response to standardized precipitation-evapotranspiration indices(SPEI)strengthened in the mid-and lower-transect.Comparison between growth and vegetation data showed that tree growth was more sensitive to drought in stands with higher species richness and greater shrub cover.Drought stress on growth may be increased by heavy competition from shrub and herb layers.These results show the non-stationary nature of tree growth-climate associations and the linkage to for-est community structures.Vegetation components should be considered in future modeling and forecasting of forest dynamics in relation to climate changes.展开更多
Phase change materials(PCMs) present promising potential for guaranteeing safety in thermal management systems.However,most reported PCMs have a single application in energy storage for thermal management systems,whic...Phase change materials(PCMs) present promising potential for guaranteeing safety in thermal management systems.However,most reported PCMs have a single application in energy storage for thermal management systems,which does not meet the growing demand for multi-functional materials.In this paper,the flexible material and hydrogen-bonding function are innovatively combined to design and prepare a novel multi-functional flexible phase change film(PPL).The 0.2PPL-2 film exhibits solid-solid phase change behavior with energy storage density of 131.8 J/g at the transition temperature of42.1℃,thermal cycling stability(500 cycles),wide-temperature range flexibility(0-60℃) and selfhealing property.Notably,the PPL film can be recycled up to 98.5% by intrinsic remodeling.Moreover,the PPL film can be tailored to the desired colors and configurations and can be cleverly assembled on several thermal management systems at ambient temperature through its flexibility combined with shape-memory properties.More interestingly,the transmittance of PPL will be altered when the ambient temperature changes(60℃),conveying a clear thermal signal.Finally,the thermal energy storage performance of the PPL film is successfully tested by human thermotherapy and electronic device temperature control experiments.The proposed functional integration strategy provides innovative ideas to design PCMs for multifunctionality,and makes significant contributions in green chemistry,highefficiency thermal management,and energy sustainability.展开更多
Quercus arkansana(Arkansas oak)is at risk of becoming endangered,as the total known population size is represented by a few isolated populations.The potential impact of climate change on this species in the near futur...Quercus arkansana(Arkansas oak)is at risk of becoming endangered,as the total known population size is represented by a few isolated populations.The potential impact of climate change on this species in the near future is high,yet knowledge of its predicted effects is limited.Our study utilized the biomod2 R package to develop habi-tat suitability ensemble models based on bioclimatic and topographic environmental variables and the known loca-tions of current distribution of Q.arkansana.We predicted suitable habitats across three climate change scenarios(SSP1-2.6,SSP2-4.5,and SSP5-8.5)for 2050,2070,and 2090.Our findings reveal that the current suitable habitat for Q.arkansana is approximately 127,881 km^(2) across seven states(Texas,Arkansas,Alabama,Louisiana,Mississippi,Georgia,and Florida);approximately 9.5%is encompassed within state and federally managed protected areas.Our models predict that all current suitable habitats will disap-pear by 2050 due to climate change,resulting in a northward shift into new regions such as Tennessee and Kentucky.The large extent of suitable habitat outside protected areas sug-gests that a species-specific action plan incorporating pro-tected areas and other areas may be crucial for its conserva-tion.Moreover,protection of Q.arkansana habitat against climate change may require locally and regionally focused conservation policies,adaptive management strategies,and educational outreach among local people.展开更多
基金financially supported by the National Natural Science Foundation of China(32192435)the Application and Demonstration Project of Network Security and Informatization Technology,Chinese Academy of Sciences(CAS-WX2022SF-0101)+1 种基金the Liaoning Provincial Key Research and Development Program(2023021230-JH2/1018)the Youth Innovation Promotion Association of CAS(2023205).
文摘Climate change is the most severe ecological challenge faced by the world today.Forests,the dominant component of terrestrial ecosystems,play a critical role in mitigating climate change due to their powerful carbon sequestration capabilities.Meanwhile,climate change has also become a major factor affecting the sustainable management of forest ecosystems.Climate-Smart Forestry(CSF)is an emerging concept in sustainable forest management.By utilizing advanced technologies,such as information technology and artificial intelligence,CSF aims to develop innovative and proactive forest management methods and decision-making systems to address the challenges of climate change.CSF aims to enhance forest ecosystem resilience(i.e.,maintain a condition where,even when the state of the ecosystem changes,the ecosystem functions do not deteriorate)through climate change adaptation,improve the mitigation capabilities of forest ecosystems to climate change,maintain high,stable,and sustainable forest productivity and ecosystem services,and ultimately achieve harmonious development between humans and nature.This concept paper:(1)discusses the emergence and development of CSF,which integrates Ecological Forestry,Carbon Forestry,and Smart Forestry,and proposes the concept of CSF;(2)analyzes the goals of CSF in improving forest ecosystem stability,enhancing forest ecosystem carbon sequestration capacity,and advocating the application and development of new technologies in CSF,including artificial intelligence,robotics,Light Detection and Ranging,and forest digital twin;(3)presents the latest practices of CSF based on prior research on forest structure and function using new generation information technologies at Qingyuan Forest,China.From these practices and reflections,we suggested the development direction of CSF,including the key research topics and technological advancement.
基金supported by National Natural Science Foundation of China(Nos.42130506,42071031)the Special Technology Innovation Fund of Carbon Peak and Carbon Neutrality in Jiangsu Province(No.BK20231515)。
文摘Background:Climate change is accelerating alterations in forest species and community composition worldwide,especially following extreme events like severe droughts and windstorms.Understanding these effects on subtropical forests is crucial for conservation and forest management,but it remains unclear whether the impacts are stochastic or deterministic.Methods:We analyzed a unique dataset from a 1-ha permanent plot in a subtropical monsoon broadleaf evergreen forest in China,monitored over 26 years with six surveys from 1994 to 2020.The forest has been free from anthropogenic disturbances for over 400 years.In each survey,we measured all trees with a diameter at breast height(DBH)≥1 cm,and recorded 11 plant functional traits relating to photosynthesis,wood properties,water use,and nutrient dynamics.Using this data,we calculated species and trait dispersion,assessing short-term(~5years)and long-term(26 years)trends in species and trait composition following severe droughts and windstorm events.Results:Severe droughts,and subsequent droughts,increased both species and trait dispersion,while species composition converged,and trait dispersion remained relatively stable throughout the recovery period.Windstorm events led to increased species dispersion but decreased trait dispersion.We observed a clear directional shift in both species and trait composition under these climatic stressors,with a more pronounced increase in trait dispersion compared to species dispersion.Conclusion:In the short term(~5 years),severe droughts and windstorms increased species composition divergence,while trait composition responses varied.Over 26 years,deterministic processes mainly drove community composition changes,especially for trait composition,although stochastic processes also played a role.These findings suggest enhancing forest resilience to climatic stressors by protecting adaptive species or increasing species diversity in management practices.
基金This study was financially supported by the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDA28020300)the National Natural Science Foundation of China(Grant No.42250410332)+2 种基金the Key Foreign Cooperation Program of the Bureau of International Cooperation of the Chinese Academy of Sciences(Grant No.177GJHZ2022020BS)the‘Double-First Class’Initiative Program for Foreign Talents of Southwest University(Grant No.cstc2021ycjh-bgzxm0002)the‘Prominent Scientist Program’of Chongqing Talents(Grant No.cstc2021ycjh-bgzxm0020)。
文摘Deforestation is one of the most serious environmental problems facing humankind.It continues to escalate rapidly across many regions of the world,thereby deteriorating the forest soil quality.This has prompted a large number of field-based studies aimed at understanding the impacts of deforestation on soil properties.However,the lack of comprehensive meta-analyses that utilized these studies has limited our deeper understanding of how different soil properties,including the soil organic carbon(SOC)pool,respond to deforestation.To address this critical knowledge gap,we conducted a meta-analysis of 144 studies to explore the impacts of deforestation on soil chemical,physical,and biological properties,with special emphasis on the long-term changes in SOC,such as concentrations,stocks,and sequestration.The results revealed that deforestation significantly decreased soil organic matter,electrical conductivity,and base saturation by 52%,50%,and 98%,respectively.While deforestation increased soil total nitrogen content and decreased available phosphorus content by 51%and 99%,respectively,it resulted in slight decreases in some chemical properties,including soil pH(1%)and base cations(1%–13%).Deforestation significantly increased bulk density by 27%and soil erosion by 47%,but significantly decreased soil aggregate stability by 39%and saturated hydraulic conductivity by 63%.Soil microbial biomass C and N concentrations and enzyme activities were significantly decreased as a consequence of deforestation.Soil biological properties were much more affected by deforestation than soil physical and chemical properties.Regarding the SOC,the land use conversion from forest to pasture significantly increased SOC concentrations,stocks,and sequestration rates(11%–13%),whereas the land use conversions from forest to both plantation and cropland significantly decreased SOC concentrations,stocks,and sequestration rates(10%–43%).This observed decline in SOC accumulations decreased with increasing years after deforestation.The SOC dynamics following deforestation were predominantly regulated by microbial biomass concentrations,dehydrogenase activity,soil erosion,saturated hydraulic conductivity,aggregate stability,as well as concentrations of total organic carbon,total nitrogen,total phosphorus and organic matter.The present meta-analytical study provides compelling evidence that deforestation can induce profound changes in soil characteristics,including soil C contents,and has significant implications for soil health sustainability and climate change mitigation.
基金financially supported by the National Natural Science Foundation of China(No.51902025).
文摘Rapid advances in thermal management technology and the increasing need for multi-energy conversion have placed stringent energy efficiency requirements on next-generation shape-stable composite phase change materials(PCMs).Magnetically-responsive phase change thermal storage materials are considered an emerging concept for energy storage systems,enabling PCMs to perform unprecedented functions(such as green energy utilization,magnetic thermotherapy,drug release,etc.).The combination of multifunctional magnetic nanomaterials and PCMs is a milestone in the creation of advanced multifunctional composite PCMs.However,a timely and comprehensive review of composite PCMs based on magnetic nanoparticle modification is still missing.Herein,we furnish an exhaustive exposition elucidating the cutting-edge advancements in magnetically responsive composite PCMs.We delve deeply into the multifarious roles assumed by distinct nanoparticles within composite PCMs of varying dimensions,meticulously scrutinizing the intricate interplay between their architectures and thermophysical attributes.Moreover,we prognosticate future research trajectories,delineate alternative stratagems,and illuminate prospective avenues.This review is intended to stimulate broader academic interest in interdisciplinary fields and provide valuable insights into the development of next-generation magnetically-responsive composite PCMs.
文摘Aiming at the gas discharge problem in electric aircraft,this work studies the gas discharge characteristics at low-temperature sub-atmospheric pressure.A gas discharge shooting platform was built,and the discharge process was photographed by intensified charge-coupled device(ICCD).A two-dimensional axisymmetric model of needle-plate electrode gas discharge was established,and three sets of Helmholtz equations were used to solve the photoionization.The results show that under the same voltage,the electric field intensity in the discharge process increases first,then decreases and finally increases again.The discharge speed increases with the increase of altitude,and the electron density in the streamer decreases with the increase of altitude.The development speed of the streamer in the middle stage is higher than that in the early stage,and the speed increases more obviously with the increase of altitude.The development speed of the streamer in the later stage is lower than that in the middle stage,but with the increase of altitude,the development speed of the streamer in the later stage is higher than that in the middle stage.
基金Project supported by the National Natural Science Foundations of China (Grant Nos. 11675119,12275136,and 12075001)the Nankai Zhide Foundations。
文摘Quantum interferometric power(IP), a discordlike measure, plays an important role in quantum metrology. We study the dynamics of IP for two-qubit X-shape states under different noisy environments. Our study shows that IP exhibits sudden change, and one side quantum channel is enough for the occurrence of a sudden change of IP. In particular, we show that the initial state having no sudden change of quantum discord exhibits a sudden change of IP under the dynamics of amplitude noise, but the converse is not true. Besides, we also investigate the dynamics of IP under two different kinds of composite noises. Our results also confirm that sudden change of IP occurs under such composite noises.
基金Supported by the National Natural Science Foundation of China(NSFC)Major Project(51991362).
文摘Considering the three typical phase-change related rock mechanics phenomena during drilling and production in oil and gas reservoirs,which include phase change of solid alkane-related mixtures upon heating,sand liquefaction induced by sudden pressure release of the over-pressured sand body,and formation collapse due to gasification of pore fillings from pressure reduction,this study first systematically analyzes the progress of theoretical understanding,experimental methods,and mathematical representation,then discusses the engineering application scenarios corresponding to the three phenomena and reveals the mechanical principles and application effectiveness.Based on these research efforts,the study further discusses the significant challenges,potential developmental trends,and research approaches that require urgent exploration.The findings disclose that various phase-related rock mechanics phenomena require specific experimental and mathematical methods that can produce multi-field coupling mechanical mechanisms,which will eventually instruct the control on resource exploitation,evaluation on disaster level,and analysis of formation stability.To meet the development needs of the principle,future research efforts should focus on mining more phase-change related rock mechanics phenomena during oil and gas resources exploitation,developing novel experimental equipment,and using techniques of artificial intelligence and digital twins to implement real-time simulation and dynamic visualization of phase-change related rock mechanics.
基金Supported by the CNPC Major Science and Technology Project(2021DJ1806).
文摘Based on recent advancements in shale oil exploration within the Ordos Basin,this study presents a comprehensive investigation of the paleoenvironment,lithofacies assemblages and distribution,depositional mechanisms,and reservoir characteristics of shale oil of fine-grained sediment deposition in continental freshwater lacustrine basins,with a focus on the Chang 7_(3) sub-member of Triassic Yanchang Formation.The research integrates a variety of exploration data,including field outcrops,drilling,logging,core samples,geochemical analyses,and flume simulation.The study indicates that:(1)The paleoenvironment of the Chang 7_(3) deposition is characterized by a warm and humid climate,frequent monsoon events,and a large water depth of freshwater lacustrine basin.The paleogeomorphology exhibits an asymmetrical pattern,with steep slopes in the southwest and gentle slopes in the northeast,which can be subdivided into microgeomorphological units,including depressions and ridges in lakebed,as well as ancient channels.(2)The Chang 7_(3) sub-member is characterized by a diverse array of fine-grained sediments,including very fine sandstone,siltstone,mudstone and tuff.These sediments are primarily distributed in thin interbedded and laminated arrangements vertically.The overall grain size of the sandstone predominantly falls below 62.5μm,with individual layer thicknesses of 0.05–0.64 m.The deposits contain intact plant fragments and display various sedimentary structure,such as wavy bedding,inverse-to-normal grading sequence,and climbing ripple bedding,which indicating a depositional origin associated with density flows.(3)Flume simulation experiments have successfully replicated the transport processes and sedimentary characteristics associated with density flows.The initial phase is characterized by a density-velocity differential,resulting in a thicker,coarser sediment layer at the flow front,while the upper layers are thinner and finer in grain size.During the mid-phase,sliding water effects cause the fluid front to rise and facilitate rapid forward transport.This process generates multiple“new fronts”,enabling the long-distance transport of fine-grained sandstones,such as siltstone and argillaceous siltstone,into the center of the lake basin.(4)A sedimentary model primarily controlled by hyperpynal flows was established for the southwestern part of the basin,highlighting that the frequent occurrence of flood events and the steep slope topography in this area are primary controlling factors for the development of hyperpynal flows.(5)Sandstone and mudstone in the Chang 7_(3) sub-member exhibit micro-and nano-scale pore-throat systems,shale oil is present in various lithologies,while the content of movable oil varies considerably,with sandstone exhibiting the highest content of movable oil.(6)The fine-grained sediment complexes formed by multiple episodes of sandstones and mudstones associated with density flow in the Chang 7_(3) formation exhibit characteristics of“overall oil-bearing with differential storage capacity”.The combination of mudstone with low total organic carbon content(TOC)and siltstone is identified as the most favorable exploration target at present.
基金the support from Grant No.2022VBA0023 funded by the Chinese Academy of Sciences President's International Fellowship Initiative.
文摘Energy storage and conservation are receiving increased attention due to rising global energy demands.Therefore,the development of energy storage materials is crucial.Thermal energy storage(TES)systems based on phase change materials(PCMs)have increased in prominence over the past two decades,not only because of their outstanding heat storage capacities but also their superior thermal energy regulation capability.However,issues such as leakage and low thermal conductivity limit their applicability in a variety of settings.Carbon-based materials such as graphene and its derivatives can be utilized to surmount these obstacles.This study examines the recent advancements in graphene-based phase change composites(PCCs),where graphene-based nanostructures such as graphene,graphene oxide(GO),functionalized graphene/GO,and graphene aerogel(GA)are incorporated into PCMs to substantially enhance their shape stability and thermal conductivity that could be translated to better storage capacity,durability,and temperature response,thus boosting their attractiveness for TES systems.In addition,the applications of these graphene-based PCCs in various TES disciplines,such as energy conservation in buildings,solar utilization,and battery thermal management,are discussed and summarized.
基金supported by the PolyU RCDSE projects(Nos.P0049221 and P0041304)We would like to express our sincere gratitude to Prof.Feng Li and Dr.Siqi Zhou from Beihang University for providing us with the BH-1 simulant,which served as the crucial reference for the PolyU-1 simulant.We would like to thank the support from the National Natural Science Foundation of China(No.42241103)the Key Research Program of the Institute of Geology and Geophysics,Chinese Academy of Sciences(No.IGGCAS-202101)。
文摘Leading national space exploration agencies and private enterprises are actively engaged in lunar exploration initiatives to accomplish manned lunar landings and establish permanent lunar bases in the forthcoming years.With limited access to lunar surface materials on Earth,lunar regolith simulants are crucial for lunar exploration research.The Chang’e-5(CE-5)samples have been characterized by state-of-the-art laboratory equipment,providing a unique opportunity to develop a high-quality lunar regolith simulant.We have prepared a high-fidelity PolyU-1 simulant by pulverizing,desiccating,sieving,and blending natural mineral materials on Earth based on key physical,mineral,and chemical characteristics of CE-5 samples.The results showed that the simulant has a high degree of consistency with the CE-5 samples in terms of the particle morphology,mineral and chemical composition.Direct shear tests were conducted on the simulant,and the measured internal friction angle and cohesion values can serve as references for determining the mechanical properties of CE-5 lunar regolith.The PolyU-1 simulant can contribute to experimental studies involving lunar regolith,including the assessment of interaction between rovers and lunar regolith,as well as the development of in-situ resource utilization(ISRU)technologies.
基金the National Natural Science Foundation of China[grant numbers 52203038,52173036 and 52073107]the National Key Technology R&D Program of China[grant number 2022YFC3901904,2022YFC3901903,and 2020YFB1709301]the Central University Basic Research Fund of China[grant number 2021XXJS035].
文摘The severe dependence of traditional phase change materials(PCMs)on the temperature-response and lattice deficiencies in versatility cannot satisfy demand for using such materials in complex application scenarios.Here,we introduced metal ions to induce the self-assembly of MXene nanosheets and achieve their ordered arrangement by combining suction filtration and rapid freezing.Subsequently,a series of MXene/K^(+)/paraffin wax(PW)phase change composites(PCCs)were obtained via vacuum impregnation in molten PW.The prepared MXene-based PCCs showed versatile applications from macroscale technologies,successfully transforming solar,electric,and magnetic energy into thermal energy stored as latent heat in the PCCs.Moreover,due to the absence of binder in the MXene-based aerogel,MK3@PW exhibits a prime solar-thermal conversion efficiency(98.4%).Notably,MK3@PW can further convert the collected heat energy into electric energy through thermoelectric equipment and realize favorable solar-thermal-electric conversion(producing 206 mV of voltage with light radiation intensity of 200 mw cm^(−2)).An excellent Joule heat performance(reaching 105℃with an input voltage of 2.5 V)and responsive magnetic-thermal conversion behavior(a charging time of 11.8 s can achieve a thermal insulation effect of 285 s)for contactless thermotherapy were also demonstrated by the MK3@PW.Specifically,as a result of the ordered arrangement of MXene nanosheet self-assembly induced by potassium ions,MK3@PW PCC exhibits a higher electromagnetic shielding efficiency value(57.7 dB)than pure MXene aerogel/PW PCC(29.8 dB)with the same MXene mass.This work presents an opportunity for the multi-scene response and practical application of PCMs that satisfy demand of next-generation multifunctional PCCs.
基金financially supported by the National Key Research and Development Program(Grant No.2022YFE0207400)the National Natural Science Foundation of China(Grant No.U22A20168 and 52174225)。
文摘Developing technologies that can be applied simultaneously in battery thermal management(BTM)and thermal runaway(TR)mitigation is significant to improving the safety of lithium-ion battery systems.Inorganic phase change material(PCM)with nonflammability has the potential to achieve this dual function.This study proposed an encapsulated inorganic phase change material(EPCM)with a heat transfer enhancement for battery systems,where Na_(2)HPO_(4)·12H_(2)O was used as the core PCM encapsulated by silica and the additive of carbon nanotube(CNT)was applied to enhance the thermal conductivity.The microstructure and thermal properties of the EPCM/CNT were analyzed by a series of characterization tests.Two different incorporating methods of CNT were compared and the proper CNT adding amount was also studied.After preparation,the battery thermal management performance and TR propagation mitigation effects of EPCM/CNT were further investigated on the battery modules.The experimental results of thermal management tests showed that EPCM/CNT not only slowed down the temperature rising of the module but also improved the temperature uniformity during normal operation.The peak battery temperature decreased from 76℃to 61.2℃at 2 C discharge rate and the temperature difference was controlled below 3℃.Moreover,the results of TR propagation tests demonstrated that nonflammable EPCM/CNT with good heat absorption could work as a TR barrier,which exhibited effective mitigation on TR and TR propagation.The trigger time of three cells was successfully delayed by 129,474 and 551 s,respectively and the propagation intervals were greatly extended as well.
基金Supported by the National Natural Science Foundation of China(42202176)CNPC-Southwest University of Petroleum Innovation Consortium Cooperation Project(2020CX050103).
文摘To clarify the formation and distribution of feldspar dissolution pores and predict the distribution of high-quality reservoir in gravity flow sandstone of the 7^(th) member of Triassic Yanchang Formation(Chang 7 Member)in the Ordos Basin,thin sections,scanning electron microscopy,energy spectrum analysis,X-ray diffraction whole rock analysis,and dissolution experiments are employed in this study to investigate the characteristics and control factors of feldspar dissolution pores.The results show that:(1)Three types of diagenetic processes are observed in the feldspar of Chang 7 sandstone in the study area:secondary overgrowth of feldspar,replacement by clay and calcite,and dissolution of detrital feldspar.(2)The feldspar dissolution of Chang 7 tight sandstone is caused by organic acid,and is further affected by the type of feldspar,the degree of early feldspar alteration,and the buffering effect of mica debris on organic acid.(3)Feldspars have varying degrees of dissolution.Potassium feldspar is more susceptible to dissolution than plagioclase.Among potassium feldspar,orthoclase is more soluble than microcline,and unaltered feldspar is more soluble than early kaolinized or sericitized feldspar.(4)The dissolution experiment demonstrated that the presence of mica can hinder the dissolution of feldspar.Mica of the same mass has a significantly stronger capacity to consume organic acids than feldspar.(5)Dissolution pores in feldspar of Chang 7 Member are more abundant in areas with low mica content,and they improve the reservoir physical properties,while in areas with high mica content,the number of feldspar dissolution pores decreases significantly.
基金supported by Basic Research Operating Expenses of the Central level Non-profit Research Institutes (IDM2022003)National Natural Science Foundation of China (42375054)+2 种基金Regional collaborative innovation project of Xinjiang (2021E01022,2022E01045)Young Meteorological Talent Program of China Meteorological Administration,Tianshan Talent Program of Xinjiang (2022TSYCCX0003)Youth Innovation Team of China Meteorological Administration (CMA2023QN08).
文摘Tree radial growth can have significantly differ-ent responses to climate change depending on the environ-ment.To elucidate the effects of climate on radial growth and stable carbon isotope(δ^(13)C)fractionation of Qing-hai spruce(Picea crassifolia),a widely distributed native conifer in northwestern China in different environments,we developed chronologies for tree-ring widths and δ^(13)C in trees on the southern and northern slopes of the Qilian Mountains,and analysed the relationship between these tree-ring variables and major climatic factors.Tree-ring widths were strongly influenced by climatic factors early in the growing season,and the radial growth in trees on the northern slopes was more sensitive to climate than in trees on the southern.Tree-ring δ^(13)C was more sensitive to climate than radial growth.δ^(13)C fractionation was mainly influenced by summer temperature and precipitation early in the growing season.Stomatal conductance more strongly limited stable carbon isotope fractionation in tree rings than photosynthetic rate did.The response between tree rings and climate in mountains gradually weakened as climate warmed.Changes in radial growth and stable carbon isotope fractionation of P.crassifolia in response to climate in the Qilian Mountains may be further complicated by continued climate change.
基金supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT)(No.2021R1C1C1004801)。
文摘There has been an increasing recognition of the crucial role of forests, responsible for sequestering atmospheric CO_(2), as a moral imperative for mitigating the pace of climate change. The complexity of evaluating climate change impacts on forest carbon and water dynamics lies in the diverse acclimations of forests to changing environments. In this study, we assessed two of the most common acclimation traits, namely leaf area index and the maximum rate of carboxylation(V_(cmax)), to explore the potential acclimation pathways of Pinus koraiensis under climate change. We used a mechanistic and process-based ecohydrological model applied to a P. koraiensis forest in Mt. Taehwa, South Korea. We conducted numerical investigations into the impacts of(i) Shared Socioeconomic Pathways 2–4.5(SSP2-4.5) and 5–8.5(SSP5-8.5),(ii) elevated atmospheric CO_(2) and temperature, and(iii) acclimations of leaf area index and V_(cmax)on the carbon and water dynamics of P. koraiensis. We found that there was a reduction in net primary productivity(NPP) under the SSP2-4.5 scenario, but not under SSP5-8.5, compared to the baseline, due to an imbalance between increases in atmospheric CO_(2) and temperature. A decrease in leaf area index and an increase in V_(cmax)of P. koraiensis were expected if acclimations were made to reduce its leaf temperature. Under such acclimation pathways, it would be expected that the well-known CO_(2) fertilizer effects on NPP would be attenuated.
基金founded by National Natural Science Foundation of China(grant Nos.:42072186 and 42090025)National Science and Technology Major Project,China(grant No.:2016ZX05046001)+3 种基金Science and Technology Research Project of Petro China Company Limited,China(grant No.:2021DJ1806)the fund support from China Scholarship Council(No.201806440002)the International Postdoctoral Exchange Fellowship Program,China(Talent-Introduction Program,No.270152)Lin Ma wishes to acknowledge the fund support from Natural Environment Research Council,United Kingdom(NE/R013527/1)。
文摘The mineralogical development and diagenetic sequence of lacustrine shales in the Chang 7 Member of the Yanchang Formation in the Ordos Basin are detailed studied.A model of their depositional system and a diagenetic diagram are proposed in this study.Through detailed petrographic,mineralogical,and elemental analyses,four distinct shale types are identified:argillaceous shale,siliceous shale,calcareous shale,and carbonate,clay,and silt-bearing shale.The main diagenetic process in argillaceous shale is the transformation of illite to smectite,negatively impacting shale porosity.Siliceous shale undergoes carbonate cementation and quartz dissolution,contributing to increased porosity,particularly in mesopores.Calcareous shale experiences diagenesis characterised by carbonate formation and dissolution,with a prevalence of siderite.In carbonate,clay,and silt-bearing shale,the dissolution of K-feldspar contributes to illitization of kaolinite.Argillaceous shale,characterised by more clay minerals and lower mesopore volume,is identified as a potential hydrocarbon seal.Siliceous shale,with the highest pore volume and abundant inter-mineral pores,emerges as a promising shale oil reservoir.These findings contribute to a comprehensive understanding of shale properties,aiding in the prediction of shale oil exploration potential in the studied area.
基金supported by the Second Tibetan Plateau Scientific Expedition and Research Program(2019QZKK0301)NationalNatural Science Foundation of China(32271886 and 42271074).
文摘Temporal changes in the relationship between tree growth and climate have been observed in numerous forests across the world.The patterns and the possible regu-lators(e.g.,forest community structure)of such changes are,however,not well understood.A vegetation survey and analyses of growth-climate relationships for Abies georgei var.Smithii(Smith fir)forests were carried along an altitudi-nal gradient from 3600 to 4200 m on Meili Snow Mountain,southeastern Tibetan Plateau.The results showed that the associations between growth and temperature have declined since the 1970s over the whole transect,while response to standardized precipitation-evapotranspiration indices(SPEI)strengthened in the mid-and lower-transect.Comparison between growth and vegetation data showed that tree growth was more sensitive to drought in stands with higher species richness and greater shrub cover.Drought stress on growth may be increased by heavy competition from shrub and herb layers.These results show the non-stationary nature of tree growth-climate associations and the linkage to for-est community structures.Vegetation components should be considered in future modeling and forecasting of forest dynamics in relation to climate changes.
基金supported by the Project of Shanghai Science and Technology Commission (Grant No. 19DZ1203102)National Key Research and Development Project (2018YFD0401300)Shanghai Municipal Science and Technology Project (16040501600)。
文摘Phase change materials(PCMs) present promising potential for guaranteeing safety in thermal management systems.However,most reported PCMs have a single application in energy storage for thermal management systems,which does not meet the growing demand for multi-functional materials.In this paper,the flexible material and hydrogen-bonding function are innovatively combined to design and prepare a novel multi-functional flexible phase change film(PPL).The 0.2PPL-2 film exhibits solid-solid phase change behavior with energy storage density of 131.8 J/g at the transition temperature of42.1℃,thermal cycling stability(500 cycles),wide-temperature range flexibility(0-60℃) and selfhealing property.Notably,the PPL film can be recycled up to 98.5% by intrinsic remodeling.Moreover,the PPL film can be tailored to the desired colors and configurations and can be cleverly assembled on several thermal management systems at ambient temperature through its flexibility combined with shape-memory properties.More interestingly,the transmittance of PPL will be altered when the ambient temperature changes(60℃),conveying a clear thermal signal.Finally,the thermal energy storage performance of the PPL film is successfully tested by human thermotherapy and electronic device temperature control experiments.The proposed functional integration strategy provides innovative ideas to design PCMs for multifunctionality,and makes significant contributions in green chemistry,highefficiency thermal management,and energy sustainability.
基金The work was partially supported by research project funding from the Undergraduate Research Grant,Arkansas Tech University.
文摘Quercus arkansana(Arkansas oak)is at risk of becoming endangered,as the total known population size is represented by a few isolated populations.The potential impact of climate change on this species in the near future is high,yet knowledge of its predicted effects is limited.Our study utilized the biomod2 R package to develop habi-tat suitability ensemble models based on bioclimatic and topographic environmental variables and the known loca-tions of current distribution of Q.arkansana.We predicted suitable habitats across three climate change scenarios(SSP1-2.6,SSP2-4.5,and SSP5-8.5)for 2050,2070,and 2090.Our findings reveal that the current suitable habitat for Q.arkansana is approximately 127,881 km^(2) across seven states(Texas,Arkansas,Alabama,Louisiana,Mississippi,Georgia,and Florida);approximately 9.5%is encompassed within state and federally managed protected areas.Our models predict that all current suitable habitats will disap-pear by 2050 due to climate change,resulting in a northward shift into new regions such as Tennessee and Kentucky.The large extent of suitable habitat outside protected areas sug-gests that a species-specific action plan incorporating pro-tected areas and other areas may be crucial for its conserva-tion.Moreover,protection of Q.arkansana habitat against climate change may require locally and regionally focused conservation policies,adaptive management strategies,and educational outreach among local people.