期刊文献+
共找到49篇文章
< 1 2 3 >
每页显示 20 50 100
Experimental and numerical investigation of cavity characteristics in behind-armor liquid-filled containers under shaped charge jet impact 被引量:1
1
作者 Shixin Ma Xiangdong Li Lanwei Zhou 《Defence Technology(防务技术)》 2025年第5期242-259,共18页
The cavity characteristics in liquid-filled containers caused by high-velocity impacts represent an important area of research in hydrodynamic ram phenomena.The dynamic expansion of the cavity induces liquid pressure ... The cavity characteristics in liquid-filled containers caused by high-velocity impacts represent an important area of research in hydrodynamic ram phenomena.The dynamic expansion of the cavity induces liquid pressure variations,potentially causing catastrophic damage to the container.Current studies mainly focus on non-deforming projectiles,such as fragments,with limited exploration of shaped charge jets.In this paper,a uniquely experimental system was designed to record cavity profiles in behind-armor liquid-filled containers subjected to shaped charge jet impacts.The impact process was then numerically reproduced using the explicit simulation program ANSYS LS-DYNA with the Structured Arbitrary Lagrangian-Eulerian(S-ALE)solver.The formation mechanism,along with the dimensional and shape evolution of the cavity was investigated.Additionally,the influence of the impact kinetic energy of the jet on the cavity characteristics was analyzed.The findings reveal that the cavity profile exhibits a conical shape,primarily driven by direct jet impact and inertial effects.The expansion rates of both cavity length and maximum radius increase with jet impact kinetic energy.When the impact kinetic energy is reduced to 28.2 kJ or below,the length-to-diameter ratio of the cavity ultimately stabilizes at approximately 7. 展开更多
关键词 cavity characteristics Shaped charge jet Behind-armor liquid-filled container Impact kinetic energy Hydrodynamic ram
在线阅读 下载PDF
A novel W-band substrate integrated microstrip to ultra-thin cavity filter transition
2
作者 CAO Yi TANG Xiao-Hong +1 位作者 LIU Yong CAI Zong-Qi 《红外与毫米波学报》 北大核心 2025年第4期540-545,共6页
A novel substrate integrated microstrip to ultra-thin cavity filter transition operating in the W-band is proposed in this letter.The structure is a new method of connecting microstrip circuits and waveguide filters,a... A novel substrate integrated microstrip to ultra-thin cavity filter transition operating in the W-band is proposed in this letter.The structure is a new method of connecting microstrip circuits and waveguide filters,and this new structure enables a planar integrated transition from microstrip lines to ultra-thin cavity filters,thereby reducing the size of the transition structure and achieving miniaturization.The structure includes a conventional tapered microstrip transition structure,which guides the electromagnetic field from the microstrip line to the reduced-height dielectric-filled waveguide,and an air-filled matching cavity which is placed between the dielectric-filled waveguide and the ultra-thin cavity filter.The heights of the microstrip line,the dielectric-filled waveguide and the ultra-thin cavity filter are the same,enabling seamless integration within a planar radio-frequency(RF)circuit.To facilitate testing,mature finline transition structures are integrated at both ends of the microstrip line during fabrications.The simulation results of the fabricated microstrip to ultra-thin cavity filter transition with the finline transition structure,with a passband of 91.5-96.5 GHz,has an insertion loss of less than 1.9 dB and a return loss lower than-20 dB.And the whole structure has also been measured which achieves an insertion loss less than 2.6 dB and a return loss lower than-15 dB within the filter's passband,including the additional insertion loss introduced by the finline transitions.Finally,a W-band compact up-conversion module is designed,and the test results show that after using the proposed structure,the module achieves 95 dBc suppression of the 84 GHz local oscillator.It is also demonstrated that the structure proposed in this letter achieves miniaturization of the system integration without compromising the filter performance. 展开更多
关键词 TRANSITION ultra-thin cavity filter planar W-BAND MINIATURIZATION
在线阅读 下载PDF
Multi-Fano resonances sensing based on a non-through metal-insulatormetal waveguide coupling D-shaped cavity
3
作者 ZHAO Xiao-long CHANG Xu-yan +2 位作者 LIU Yan-li ZHANG Yan-Jun ZHANG Zhi-dong 《中国光学(中英文)》 北大核心 2025年第6期1484-1494,共11页
A plasmonics waveguide structure that consist of a non-through metal–insulator–metal(MIM)waveguide coupled with a D-shaped cavity was designed.And the transmission properties,magnetic field distribution,and refracti... A plasmonics waveguide structure that consist of a non-through metal–insulator–metal(MIM)waveguide coupled with a D-shaped cavity was designed.And the transmission properties,magnetic field distribution,and refractive index sensing functionality were simulated using the finite element method(FEM).A multi-Fano resonance phenomenon was clearly observable in the transmission spectra.The Fano resonances observed in the proposed structure arise from the interaction between the discrete states of the Dshaped resonant cavity and the continuum state of the non-through MIM waveguide.The influence of structural parameters on Fano resonance modulation was investigated through systematic parameter adjustments.Additionally,the refractive index sensing properties,based on the Fano resonance,were investigated by varying the refractive index of the MIM waveguide's insulator layer.A maximum sensitivity and FOM of 1155 RIU/nm and 40 were achieved,respectively.This research opens up new possibilities for designing and exploring high-sensitivity photonic devices,micro-sensors,and innovative on-chip sensing architectures for future applications. 展开更多
关键词 surface plasmon polaritons metal-insulator-metal(MIM)waveguide D-shaped resonant cavity double Fano resonance refractive index sensor
在线阅读 下载PDF
CFD–FEM analysis of ice-impact effect on the water-exit cavity and hydrodynamic characteristics of a ventilated vehicle
4
作者 Hao Wang Xiaowei Cai +4 位作者 Zhihua Chen Yihang Wang Yuan Liu Wenjun Yi Zhengui Huang 《Defence Technology(防务技术)》 2025年第11期204-222,共19页
Understanding the evolution mechanisms of water-exit cavities and flow fields evolve during highintensity interactions between vehicles and floating ice is critical for advancing the application of submarine-launched ... Understanding the evolution mechanisms of water-exit cavities and flow fields evolve during highintensity interactions between vehicles and floating ice is critical for advancing the application of submarine-launched marine equipment in low-temperature ice-prone waters.A computational fluid dynamics-finite element method(CFD-FEM) coupled framework was established to simulate bidirectional fluid-structure interactions during the water-exit process of a ventilated vehicle impacting ice in brash environments.Distinct evolution characteristics were revealed by comparatively analyzing the cavity,flow fields,hydrodynamic loading,structural deformation,and trajectory stability across three scenarios:ice-free,single-ice,and multi-ice.Furthermore,the position-dependent impact effects were characterized.The findings reveal that the impact,friction,and compression effects of ice induce bending and wrinkling of the shoulder cavity,aggravating its collapse and increasing the wetting of the vehicle,resulting in a substantial expansion of the high-velocity and vortex-dominated regions within the flow field,accompanied by more obvious water splashes.The impact of ice notably increases the kinetic energy dissipation of the vehicle during the cross-water stage and diminishes its motion stability.In the center-symmetric layout,the vehicle collides with ice only once,with high stress confined to the head.Conversely,the radial-offset layout causes secondary or even multiple collisions,resulting in high-stress areas on the shoulder of the vehicle,making it deflect and ultimately causing the tail cavity to tilt and become destabilized.The design of new vehicles suitable for ice-prone environments should focus on enhancing the impact toughness of the head structure and optimizing the surface shape design to improve the adaptability to low-temperature complex environments. 展开更多
关键词 Water exit cavity evolution Motion characteristics Floating ice Impact load Fluid-structure coupling
在线阅读 下载PDF
Impact of the head cavity and submerged nozzle on corner vortices and pressure oscillations in a solid rocket motor with a backward- facing step
5
作者 Hongbo Xu Jie Hu +2 位作者 Chao Huo Yifang He Peijin Liu 《Defence Technology(防务技术)》 2025年第7期405-416,共12页
Taking a C1x motor with a backward-facing step which can generate a typical corner vortex as a reference,a numerical methodology using large eddy simulation was established in this study.Based on this methodology,the ... Taking a C1x motor with a backward-facing step which can generate a typical corner vortex as a reference,a numerical methodology using large eddy simulation was established in this study.Based on this methodology,the position of the backward-facing step of the motor was computed and analyzed to determine a basic configuration.Two key geometrical parameters,the head cavity angle and submerged nozzle cavity height,were subsequently introduced.Their effects on the corner vortex motion and their interactions with the acoustic pressure downstream of the backward-facing step were analyzed.The phenomena of vortex acoustic coupling and characteristics of pressure oscillations were further explored.The results show that the maximum error between the simulations and experimental data on the dominant frequency of pressure oscillations is 5.23%,which indicates that the numerical methodology built in this study is highly accurate.When the step is located at less than 5/8 of the total length of the combustion chamber,vortex acoustic coupling occurs,which can increase the pressure oscillations in the motor.Both the vorticity and the scale of vortices in the downstream step increase when the head cavity angle is greater than 24°,which increases the amplitude of the pressure oscillation by maximum 63.0%.The submerged nozzle cavity mainly affects the vortices in the cavity itself rather than those in the downstream step.When the height of the cavity increases from 10 to 20 mm,the pressure oscillation amplitude under the main frequency increases by 39.1%.As this height continues to increase,the amplitude of pressure oscillations increases but the primary frequency decreases. 展开更多
关键词 Solid rocket motor Backward-facing step Head cavity Submerged nozzle Large eddy simulation Pressure oscillation
在线阅读 下载PDF
Three-dimensional burning crack dynamics in constrained spherical explosive:visualization analysis and cavity-coupled pressure modeling
6
作者 Chuanyu Pan Tao Li +4 位作者 Hua Fu Hailin Shang Pingchao Hu Ping Li Xilong Huang 《Defence Technology(防务技术)》 2025年第10期306-318,共13页
Accurate characterization of three-dimensional burning crack propagation remains pivotal yet challenging for energetic material safety,as conventional diagnostics and models inadequately resolve coupled crack-pressure... Accurate characterization of three-dimensional burning crack propagation remains pivotal yet challenging for energetic material safety,as conventional diagnostics and models inadequately resolve coupled crack-pressure dynamics in confined explosives.This study combines a novel spherical confinement system(with/without sapphire windows)with synchronized high-speed imaging and 3D reconstruction to overcome optical limitations in opaque explosives.Experimental analysis of centrally ignited HMX-based PBX-1 reveals:(1)burning cracks propagate radially with equatorial acceleration and polar deceleration,(2)systematic formation of 3–4 dominant crack branches across geometries,and(3)pressure evolution exhibiting gradual accumulation(subsurface cracking)followed by exponential growth(surface burn-through),with decay governed by cavity expansion.Building on Hill's framework,we develop a model incorporating cavity volume and fracture toughness criteria,validated against PBX explosive(95%HMX-based)experiments.The model demonstrates improved prediction of pressure trends compared to prior approaches,particularly in resolving laminar-phase accumulation and crackinduced surge transitions.Results establish structural cavity volume as a critical modulator of measured pressure and reveal direction-dependent crack kinematics as fundamental features of constrained combustion.This work provides experimentally validated insights into mechanisms of reaction pressure development and burning cracks pathways during constrained PBX explosive combustion. 展开更多
关键词 Burning crack propagation Explosive combustion reaction Non-shock ignition Structural cavity effects Energetic material safety
在线阅读 下载PDF
Cavity 3D modeling and correlative techniques based on cavity monitoring 被引量:25
7
作者 罗周全 刘晓明 +2 位作者 张保 鹿浩 李畅 《Journal of Central South University of Technology》 EI 2008年第5期639-644,共6页
According to the mining method for Dongguashan Copper Mine and Tongkeng Mine in China, and with the help of the cavity monitoring system(CMS) and mining software Surpac, the 3D cavity models were established exactly... According to the mining method for Dongguashan Copper Mine and Tongkeng Mine in China, and with the help of the cavity monitoring system(CMS) and mining software Surpac, the 3D cavity models were established exactly. A series of correlative techniques for calculating stope over-excavation and under-excavation, stope dilution and ore loss rates, and the blasting design of the pillar with complicated irregular boundaries were developed. These techniques were applied in Dongguashan Copper Mine and Tongkeng Mine successfully. Using these techniques, the dilution rates of stopes 52-2^#, 52-6^#, 52-8^#and 52-10^# of Dongguashan Copper Mine are calculated to be 2.12%, 8.46%, 12-67% and 10.68%, respectively, and the ore loss rates of stopes 52-6^# and 5-8^# are 4.41% and 3.70%, severally. Furthermore, according to the design accomplished by the technique for a pillar of Tongkeng Mine with irregular boundary, the volume, total length of boreholes and the dynamite quantity of the pillar are computed to be 1.2 ×10^4 m^3, 2.98 km and 10.97 t, correspondingly. 展开更多
关键词 cavity 3D modeling cavity monitoring system STOPE DILUTION loss rate pillar blasting
在线阅读 下载PDF
3D cavity detection technique and its application based on cavity auto scanning laser system 被引量:4
8
作者 刘希灵 李夕兵 +2 位作者 李发本 赵国彦 秦豫辉 《Journal of Central South University of Technology》 EI 2008年第2期285-288,共4页
Ground constructions and mines are severely threatened by ones. Safe and precise cavity detection is vital for reasonable cavity underground cavities especially those unsafe or inaccessible evaluation and disposal. Th... Ground constructions and mines are severely threatened by ones. Safe and precise cavity detection is vital for reasonable cavity underground cavities especially those unsafe or inaccessible evaluation and disposal. The conventional cavity detection methods and their limitation were analyzed. Those methods cannot form 3D model of underground cavity which is used for instructing the cavity disposal; and their precisions in detection are always greatly affected by the geological circumstance. The importance of 3D cavity detection in metal mine for safe exploitation was pointed out; and the 3D cavity laser detection method and its principle were introduced. A cavity auto scanning laser system was recommended to actualize the cavity 3D detection after comparing with the other laser detection systems. Four boreholes were chosen to verify the validity of the cavity auto scanning laser system. The results show that the cavity auto scanning laser system is very suitable for underground 3D cavity detection, especially for those inaccessible ones. 展开更多
关键词 cavity detection 3D laser detection cavity auto scanning laser system
在线阅读 下载PDF
基于Cavity基板技术的堆叠芯片封装设计与实现 被引量:1
9
作者 谢慧琴 曹立强 +4 位作者 李君 张童龙 虞国良 李晨 万里兮 《科学技术与工程》 北大核心 2014年第20期224-228,共5页
介绍了一种适用于堆叠芯片的封装结构。采用层压、机械铣刀开槽等工艺获得Cavity基板,通过引线键合(wire bonding,WB)和倒装焊(flip chip,FC)两种方式实现堆叠芯片与基板的互连,并将堆叠芯片埋入Cavity基板。最后,将包含4款有源芯片和2... 介绍了一种适用于堆叠芯片的封装结构。采用层压、机械铣刀开槽等工艺获得Cavity基板,通过引线键合(wire bonding,WB)和倒装焊(flip chip,FC)两种方式实现堆叠芯片与基板的互连,并将堆叠芯片埋入Cavity基板。最后,将包含4款有源芯片和22个无源器件的小系统高密度集成在一个16 mm×16 mm的标准球栅阵列封装(ball grid array,BGA)封装体内。相比较于传统的二维封装结构,该封装结构将封装面积减小了40%,封装高度减小500μm左右,并将堆叠芯片与基板的互连空间增加了2倍。对这款封装结构的设计过程进行了详细的阐述,并验证了该封装设计的工艺可行性。 展开更多
关键词 cavity基板 堆叠芯片 小型化 高密度
在线阅读 下载PDF
Dynamic response of cylindrical lined cavity in elastic medium 被引量:6
10
作者 高盟 王滢 高广运 《Journal of Central South University》 SCIE EI CAS 2013年第10期2849-2855,共7页
An analytical solution to the transient dynamic response of a cylindrical lining subjected to an internal loading was presented and the dynamic interaction between the lining and surrounding soil was considered. The l... An analytical solution to the transient dynamic response of a cylindrical lining subjected to an internal loading was presented and the dynamic interaction between the lining and surrounding soil was considered. The lining structure and the soil were treated as a cylindrical elastic shell and an infinite elastic compressible medium, respectively. A two-dimensional axisymmetric wave equation was derived from the governing equation of displacement by introducing the potential functions. Shell equation of motion was established based on continuity conditions. The closed-form solution for dynamic response of the lining due to an impact loading was obtained in Laplace transforms and inverse transforms. Detailed parametric studies were also presented to illustrate the influences of the Poisson ratio of soil, the dynamic shear moduli of both soil and lining and the thickness of lining on dynamic response of the lining. 展开更多
关键词 CYLINDRICAL lined cavity INTERNAL LOADING TRANSIENT response LAPLACE transforms
在线阅读 下载PDF
Collapse mode of rock mass induced by a concealed karst cave above a deep cavity 被引量:10
11
作者 HUANG Fu ZHANG Min JIANG Zhen 《Journal of Central South University》 SCIE EI CAS CSCD 2019年第7期1747-1754,共8页
Reliable prediction of the potential collapse region of rock mass is a key challenge for deep underground cavity excavation, especially if a concealed karst cave is located above the excavated cavity. Because of the e... Reliable prediction of the potential collapse region of rock mass is a key challenge for deep underground cavity excavation, especially if a concealed karst cave is located above the excavated cavity. Because of the effect of the blast vibration, a possible collapse would occur at a certain region between the concealed karst cave and the excavated cavity. This paper aims to study the roof collapse of a deep buried cavity induced by a concealed karst cave base on a two-dimensional failure mechanism by using upper bound theorem. The failure mechanism is constituted by arbitrary curves which is similar to the collapse observed in an actual cavity excavation. The shape and range of the collapse block is determined by virtual work equation in conjunction with variational approach. The results obtained by the presented approach are approximate with the numerical results provided by finite difference code, which indicates that the proposed method in this work is valid. 展开更多
关键词 concealed karst cave deep rectangular cavity collapse mechanism rock mass
在线阅读 下载PDF
Cavity noise sensitivity analysis of tire contour design factors and application of contour optimization methodology 被引量:7
12
作者 KIM Seong-rae SUNG Ki-deug +1 位作者 LEE Dong-woo HUH Sun-chul 《Journal of Central South University》 SCIE EI CAS 2012年第8期2386-2393,共8页
Cavity resonance noise of passenger car tires is generated by interacting excitation between a tire structure and the fill gas (air), and generally lies in a frequency range of 200?250 Hz. As such, this noise is stron... Cavity resonance noise of passenger car tires is generated by interacting excitation between a tire structure and the fill gas (air), and generally lies in a frequency range of 200?250 Hz. As such, this noise is strongly perceived and may be a serious source of driver annoyance. Thus, many studies regarding the cavity noise mechanism and its reduction have already been conducted. In this work, a vibro-acoustic coupled analysis was conducted between a tire structure and air cavity. Using this analysis, we can more accurately simulate the tire noise performance in the region of the cavity resonance frequency. An analysis of the effects of variation of tire contour design factors was conducted, using design-of-experiments methods. Finally, a multi-objective optimization was performed using in-house codes to reduce the cavity noise level while minimizing the loss of other performances, such as diminished ride comfort and handling caused by the variations of contour. As a result of this optimization, an optimized contour shape was derived, which satisfied the multi-objective performances. 展开更多
关键词 tire cavity noise vibro-acoustic coupled analysis finite element method boundary element method (BEM) sensitivity optimization
在线阅读 下载PDF
Numerical study of effect of front cavity on hydrogen/air premixed combustion in a micro-combustion chamber 被引量:5
13
作者 CHEN Hai LIU Wei-qiang 《Journal of Central South University》 SCIE EI CAS CSCD 2019年第8期2259-2271,共13页
The micro-combustion chamber is the key component for micro-TPV systems. To improve the combustor wall temperature level and its uniformity and efficiency, an improved flat micro-combustor with a front cavity is built... The micro-combustion chamber is the key component for micro-TPV systems. To improve the combustor wall temperature level and its uniformity and efficiency, an improved flat micro-combustor with a front cavity is built, and the combustion performance of the original and improved combustors of premixed H2/air flames under various inlet velocities and equivalence ratios is numerically investigated. The effects of the front cavity height and length on the outer wall temperature and efficiency are also discussed. The front cavity significantly improves the average outer wall temperature, outer wall temperature uniformity, and combustion efficiency of the micro-combustor, increases the area of the high temperature zone, and enhances the heat transfer between the burned blends and inner walls. The micro-combustor with the front cavity length of 2.0 mm and height of 0.5 mm is suitable for micro-TPV system application due to the relatively high outer wall temperature, combustion efficiency, and the most uniform outer wall temperature. 展开更多
关键词 MICRO-COMBUSTOR HYDROGEN front cavity numerical study energy conversion efficiency
在线阅读 下载PDF
Experimental study on the cavity evolution and liquid spurt of hydrodynamic ram 被引量:5
14
作者 Anran Chen Xiangdong Li +1 位作者 Lanwei Zhou Yangziyi Ji 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2022年第11期2008-2022,共15页
In research of the characteristics of the cavity evolution, the pressure, and the liquid spurt in hydrodynamic ram, the experiment of the high-velocity fragment impacting the water-filled container had been conducted.... In research of the characteristics of the cavity evolution, the pressure, and the liquid spurt in hydrodynamic ram, the experiment of the high-velocity fragment impacting the water-filled container had been conducted. The relationships between the above three characteristics have been researched. The evolution of the cavity can be divided into three processes according to its shape characteristics. The first liquid spurt occurred in Process Ⅱ and the rest of it occurred in Process Ⅲ. The duration of the second liquid spurt is longer than the first liquid spurt. When the impact velocity of the fragment is less than996 m/s, the velocity of the second liquid spurt is the highest. When the velocity of the fragment is greater than 996 m/s, the velocity of the first liquid spurt is the highest. The maximum velocities of the first and second liquid spurt are 111 m/s and 94 m/s respectively. The pressure fluctuated sharply in Processes Ⅰ and Ⅲ. The maximum peak pressures in the shock and the cavity oscillation phases are15.51 MPa and 7.96 MPa respectively. The time interval of the two adjacent pressure pulses increases with the increase of the fragment velocity. 展开更多
关键词 Hydrodynamic ram cavity oscillation Collapse pressure Liquid spurt
在线阅读 下载PDF
Dynamic response of cylindrical cavity to anti-plane impact load by using analytical approach 被引量:4
15
作者 翟朝娇 夏唐代 +1 位作者 杜国庆 丁智 《Journal of Central South University》 SCIE EI CAS 2014年第1期405-415,共11页
The transient response of an unlimited cylindrical cavity buried in the infinite elastic soil subjected to an anti-plane impact load along the cavern axis direction was studied.Using Laplace transform combining with c... The transient response of an unlimited cylindrical cavity buried in the infinite elastic soil subjected to an anti-plane impact load along the cavern axis direction was studied.Using Laplace transform combining with contour integral of the Laplace inverse transform specifically,the general analytical expressions of the soil displacement and stress are obtained in the time domain,respectively.And the numerical solutions of the problem computed by analytical expressions are presented.In the time domain,the dynamic responses of the infinite elastic soil are analyzed,and the calculation results are compared with those from numerical inversion proposed by Durbin and the static results.One observes good agreement between analytical and numerical inversion results,lending the further support to the method presented.Finally,some valuable shear wave propagation laws are gained: the displacement of the soil remains zero before the wave arrival,and after the shear wave arrival,the stress and the displacement at this point increase abruptly,then reduce and tend to the static value gradually at last.The wave attenuates along the radial,therefore the farther the wave is from the source,the smaller the stress and the displacement are,and the stress and the displacement are just functions of the radial distance from the axis. 展开更多
关键词 cylindrical cavity ANTI-PLANE Laplace transform contour integral impact load dynamic responses
在线阅读 下载PDF
A new failure mechanism for deep cavity and upper bound solution of supporting pressure 被引量:4
16
作者 张道兵 刘智振 张佳华 《Journal of Central South University》 SCIE EI CAS CSCD 2017年第9期2082-2091,共10页
The investigation of supporting pressure is of great significance to the design of underground structures.Based on the kinematical approach of limit analysis,an improved failure mechanism is proposed,and the supportin... The investigation of supporting pressure is of great significance to the design of underground structures.Based on the kinematical approach of limit analysis,an improved failure mechanism is proposed,and the supporting pressure is investigated for deep buried cavity.Three failure mechanisms are first introduced according to the existing failure mechanisms of geotechnical structures of limit analysis.A comparison with respect to the optimal failure mechanisms and the upper bound solutions provided among these three mechanisms are then conducted in an attempt to obtain the improved failure mechanism.The results provided by the improved failure mechanism are in good agreement with those by the existing method,the numerical solution and field monitoring,which demonstrates that the proposed failure mechanism is effective for the upper bound analysis of supporting pressure. 展开更多
关键词 deep cavity failure mechanism limit analysis upper bound solution
在线阅读 下载PDF
Growth model of cavity generated by the projectile impacting liquid-filled tank 被引量:3
17
作者 Bei-lei Zhao Ji-guang Zhao +2 位作者 Cun-yan Cui Yong-sheng Duan Yan Wang 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2020年第3期609-616,共8页
The high-speed impact of a projectile on a liquid-filled tank causes the hydraulic ram,in which a cavity is formed.To study the growth characteristics of the cavity,the formation mechanism of the cavity is analyzed.Th... The high-speed impact of a projectile on a liquid-filled tank causes the hydraulic ram,in which a cavity is formed.To study the growth characteristics of the cavity,the formation mechanism of the cavity is analyzed.The effect of Reynolds number and Mach number on drag coefficient is considered,the axial and radial growth models of the cavity are established respectively.The relative errors between the cavity length calculated by the axial growth model,the cavity diameter calculated by the radial growth model and Ma L.Y.test results are less than 20%,which verifies the effectiveness of the axial and radial growth models.Finally,numerical simulation is carried out to study the growth characteristics of the cavity caused by the projectile impacting the satellite tank at the velocity of 4000 m/s.The cavity length and diameter calculated by the axial and radial growth models agree well with those obtained by simulation results,indicating that the cavity length and diameter in satellite tank can be accurately calculated by the axial and radial growth models. 展开更多
关键词 PROJECTILE Impact Liquid-filled tank cavity Axial growth model Radial growth model
在线阅读 下载PDF
Energy dissipation of cavity expansion based on generalized non-linear failure criterion under high stresses 被引量:3
18
作者 邹金锋 童无欺 赵健 《Journal of Central South University》 SCIE EI CAS 2012年第5期1419-1424,共6页
Based on the compression mechanism for analyzing the cavity expansion problem in soil under high stresses,generalized non-linear failure criterion and large strain and energy conservation in plastic region during the ... Based on the compression mechanism for analyzing the cavity expansion problem in soil under high stresses,generalized non-linear failure criterion and large strain and energy conservation in plastic region during the cavity expanding were adopted.The energy conservation equation was established and the limited pressure of cavity expansion under high stresses was given based on the energy dissipation analysis method,in which the energy generated from cavity expansion is absorbed by the volume change and shear strain caused in soil.The factors of large strain and dilatation were considered by the proposed method.The analysis shows that the limited pressure is determined by failure criterion,stress state,large deformation characteristic,dilatation and strength of soil.It is shown from the comparison that the results with the proposed method approximate to those of the in-situ method.The cavity expansion pressure first decreases and then increases nonlinearly with both of shear modulus and dilatation increasing. 展开更多
关键词 energy dissipation energy conservation large strain cavity expansion high stress
在线阅读 下载PDF
Combustion characteristics of supersonic strut-cavity combustor under plasma jet-assisted combustion 被引量:2
19
作者 ZHANG Zhe JIN Xing XI Wen-xiong 《Journal of Central South University》 SCIE EI CAS CSCD 2021年第1期311-324,共14页
Plasma jet has been widely used in supersonic combustor as an effective ignition and combustion assisted method,but currently it is mostly combined with the traditional wall fuel injection method,while the application... Plasma jet has been widely used in supersonic combustor as an effective ignition and combustion assisted method,but currently it is mostly combined with the traditional wall fuel injection method,while the application combined with the central fuel injection method is less.In order to expand the combustion range,the plasma jet was introduced into a strut-cavity combustor with an alternating-wedge.The effects of total pressure of strut fuel injection,total pressure of cavity fuel injection,total pressure of plasma jet injection and plasma jet media on the combustion characteristics were analyzed in supersonic flow by numerical calculations in a three-dimensional domain.The combustion field structure,wall pressure distribution,combustion efficiency and distribution of H2O at the exit of the combustor with different injection conditions were analyzed.The results show that the combustion efficiency decreases with the increase of the strut fuel injection total pressure.However,the combustion area downstream increases when the total pressure of the strut fuel injection increases within the proper range.The combustion range is expanded and the combustion efficiency is improved when the cavity fuel injection total pressure is increased within the range of 0.5−2.0 MPa,but a sharp drop in combustion efficiency can be found due to limited fuel mixing when the total injection pressure of the cavity fuel is excessively increased.With the increased total injection pressure of the plasma jet,the height of the cavity shear layer is raised and the equivalence ratio of the gas mixture in the cavity is improved.When the total pressure of the plasma jet is 1.25 MPa,the combustion efficiency reaches a maximum of 82.1%.The combustion-assisted effect of different plasma jet media is significantly different.When the medium of the plasma jet is O2,the combustion-assisted effect on the combustor is most significant. 展开更多
关键词 plasma jet STRUT cavity supersonic combustion numerical simulation combustion efficiency
在线阅读 下载PDF
Numerical study on the cavity dynamics for vertical water entries of twin spheres 被引量:2
20
作者 Xu Wang Xujian Lyu +1 位作者 Ruisheng Sun Dongdong Tang 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第2期459-472,共14页
In this study, a three dimensional(3D) numerical model of six-degrees-of-freedom(6DOF) is applied to simulate the water entries of twin spheres side-by-side at different lateral distances and time intervals.The turbul... In this study, a three dimensional(3D) numerical model of six-degrees-of-freedom(6DOF) is applied to simulate the water entries of twin spheres side-by-side at different lateral distances and time intervals.The turbulence structure is described using the shear-stress transport k-ω(SST k-ω) model, and the volume of fluid(VOF) method is used to track the complex air-liquid interface. The motion of spheres during water entry is simulated using an independent overset grid. The numerical model is verified by comparing the cavity evolution results from simulations and experiments. Numerical results reveal that the time interval between the twin water entries evidently affects cavity expansion and contraction behaviors in the radial direction. However, this influence is significantly weakened by increasing the lateral distance between the two spheres. In synchronous water entries, pressure is reduced on the midline of two cavities during surface closure, which is directly related to the cavity volume. The evolution of vortexes inside the two cavities is analyzed using a velocity vector field, which is affected by the lateral distance and time interval of water entries. 展开更多
关键词 Twin water entries Side-by-side cavity Numerical simulation
在线阅读 下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部