The cavitation incipience and development of water flow over a thin hydrofoil placed in the test section of high-speed cavitation tunnel were investigated.Hydrofoils with smooth and rough leading edge were tested for ...The cavitation incipience and development of water flow over a thin hydrofoil placed in the test section of high-speed cavitation tunnel were investigated.Hydrofoils with smooth and rough leading edge were tested for different upstream velocities and incidence angles.The observations clearly revealed that cavitation incipience is enhanced by roughness at incidence angle below 2°.This is in line with the former reports,according to whose roughness element decreases the wettability and traps a larger amount of gas.As a result,surface nucleation is enhanced with an increased risk of cavitation.Surprisingly,for higher incidence angles(>3°),it was found that cavitation incipience is significantly delayed by roughness while developed cavitation is almost the same for both smooth and rough hydrofoils.This unexpected incipience delay is related to the change in the boundary layer structure due to roughness.It was also reported a significant influence of roughness on the dynamic of developed cavitation and shedding of transient cavities.展开更多
Cavitation caused vibration and noise of hydraulic machinery. To some extent,cavitation made fatigue damage in advance. Many scholars found that the re-entrant jets were the reasons of the shedding of cavities. To sup...Cavitation caused vibration and noise of hydraulic machinery. To some extent,cavitation made fatigue damage in advance. Many scholars found that the re-entrant jets were the reasons of the shedding of cavities. To suppress cavitation,based on the idea of blocking the re-entrant jets,a special surface flow structure of 2D hydrofoil was proposed. The through-hole was made in the proper position of the hydrofoil. The incoming flow can outflow from this jet-hole automatically depending on the pressure difference between pressure side and suction side. Re-entrant jet growth can be weakened by optimizing the jet-hole geometry. Based on the standard k-ε turbulence model and Schnerr & Sauer cavitation model,under different cavitation numbers( σ) and jet-angles( β) for NACA0066( 2D) hydrofoil with 8° angles of attack,cavitation field numerical analysis was carried out. The results show that 2D hydrofoil cavitation flow had a strong unsteadiness. Making a jet-hole at the junction between the re-entrant jet and cavity can effectively minimize cloud cavitation. For a certain cavitation condition,optimal jet-angles( β) can be obtained to control cavitation growth. For the same β,the effects of cavitation suppression were changed with different cavitation numbers( σ). Consequently,suitable jet-angle and jet-position could extend the stable operating range of the hydrofoil.展开更多
To study the effectiveness of hydrofoil surface water injection on cavitation suppression,the unsteady cavitation flow field around the NACA0066 hydrofoil at attack angle of 6°was simulated by the modified RNG k-...To study the effectiveness of hydrofoil surface water injection on cavitation suppression,the unsteady cavitation flow field around the NACA0066 hydrofoil at attack angle of 6°was simulated by the modified RNG k-εturbulence model combined with the full-cavitation model.The structure of cavitation flow field and the hydrodynamic performance of hydrofoil were analyzed at the cavitation number of 0.85,0.70,0.55,respectively.The results show that barriered by the jet,the momentum of the reentrant jet was reduced;The development of cavitation and the strength of cavity shedding were weakened to some extent.Cavitation suppression effect was very obvious in the cavitation conditions with the cavitation number of 0.7 and above when the injection position was at 37% chord length from the hydrofoil leading edge and the jet-flow ratio kept 0.3.Time-averaged lift and drag coefficient were reduced,and the lift-drag ratio increased in water injection conditions.展开更多
A single bubble trapped at an antinode of an acoustic standing wave field in water can emit 50ps-140ps light pulses, called “single bubble sonoluminescence” (SBSL). It arouses much interest in physical acoustics bec...A single bubble trapped at an antinode of an acoustic standing wave field in water can emit 50ps-140ps light pulses, called “single bubble sonoluminescence” (SBSL). It arouses much interest in physical acoustics because of its highly non-linear characteristics, high concentration of energy, and stable cavitation behavior. In this paper, bubble stability, the dynamic behavior of bubbles, non-invasive measurement of driving acoustic pressure and Mie scattering method are introduced.展开更多
A submerged cavitation water jet(SCWJ)is an effective method to recycle solid propellant from obsolete solid engines by the breaking method.Solid propellant's breaking modes and mechanical process under SCWJ impac...A submerged cavitation water jet(SCWJ)is an effective method to recycle solid propellant from obsolete solid engines by the breaking method.Solid propellant's breaking modes and mechanical process under SCWJ impact are unclear.This study aims to understand those impact breaking mechanisms.The hydroxyl-terminated polybutadiene(HTPB)propellant was chosen as the research material,and a self-designed test system was used to conduct impact tests at four different working pressures.The high-speed camera characterized crack propagation,and the DIC method calculated strain change during the impact process.Besides,micro and macro fracture morphologies were characterized by scanning electron microscope(SEM)and computed tomography(CT)scanning.The results reveal that the compressive strain concentration region locates right below the nozzle,and the shear strain region distributes symmetrically with the jet axis,which increases to 4% at first 16th ms,the compressive strain rises to 2% and 6% in the axial and transverse direction,respectively.The two tensile cracks formed first at the compression strain concentrate region,and there generate many shear cracks around the tensile cracks,and those shear cracks that develop and aggregate cause the cracks to become wider and cut through the tensile cracks,forming the tensile-shear cracks and the impact parts eventually fail.The HTPB propellant forms a breaking hole shaped conical after impact 10 s.The mass loss increases by 17 times at maximum,with the working pressure increasing by three times.Meanwhile,the damage value of the breaking hole remaining on the surface increases by 7.8 times while 2.9 times in the depth of the breaking hole.The breaking efficiency is closely affected by working pressures.The failure modes of HTPB impacted by SCWJ are classified as tensile crack-dominated and tensile-shear crack-dominated damage mechanisms.展开更多
Cavitation bubble collapse has a great influence on the temperature of hydraulic oil. Herein, cone-type throttle valve experiments are carried out to study the thermodynamic processes of cavitation. First, the process...Cavitation bubble collapse has a great influence on the temperature of hydraulic oil. Herein, cone-type throttle valve experiments are carried out to study the thermodynamic processes of cavitation. First, the processes of growth and collapse are analysed, and the relationships between the hydraulic oil temperature and bubble growth and collapse are deduced. The effect of temperature is then considered on the hydraulic oil viscosity and saturated vapour pressure. Additionally, an improved form of the Rayleigh–Plesset equation is developed. The effect of cavitation on the hydraulic oil temperature is experimentally studied and the effects of cavitation bubble collapse in the hydraulic system are summarised. Using the cone-type throttle valve as an example, a method to suppress cavitation is proposed.展开更多
Cavitation will reduce the turbine performance and even damage the turbine components.To verify the effects of splitter blades on improving the cavitation performance,the cavitation flow inside a Francis turbine runne...Cavitation will reduce the turbine performance and even damage the turbine components.To verify the effects of splitter blades on improving the cavitation performance,the cavitation flow inside a Francis turbine runner with splitter blades was numerically simulated by using the Singhal cavitation model and the standard k-ε turbulence model.The distributions of static pressure and gas volume fractions on the surface of the runner blades were predicated under different conditions,and the cavitation in the flow field of the runner was analyzed.The results show that the static pressure and gas volume fractions are more uniformly distributed on the short blades than those on the long blades in Francis turbines with splitter blades,and there is almost no cavitation on the short blades;their distributions are more uniform under small flow conditions than those under large flow conditions;and large gas volume fractions are concentrated at the outlet tip near the band on the suction side of the long blade.The installation of splitter blades can improve the cavitation performance of conventional Francis turbines.展开更多
A finite volume,multiphase solver in the framework of OpenFOAM was used to calculate the flow field of the cavitating flow over the Clark-Y hydrofoil. This solver used Transport Based Equation Model(TEM) to solve the ...A finite volume,multiphase solver in the framework of OpenFOAM was used to calculate the flow field of the cavitating flow over the Clark-Y hydrofoil. This solver used Transport Based Equation Model(TEM) to solve the liquid volume fraction,and utilized volume of fluid(VOF) technique to predict the interface between liquid and vapor phases. The simulation was designed to study the cavitation shedding and different fluid characteristics in the cloud cavitation regime when adopting two different Large Eddy Simulation(LES) models,namely,one equation eddy viscosity(one EqEddy) model and Smagorinsky model. It is shown that these two models can be used to study the cavitation shedding dynamics and predict the velocity profiles.展开更多
Based on numerical method, effects of silt particle with certain silt mean diameter and silt concentration on the evolution of cavitation in a centrifugal pump were studied. Silt mean diameter 0.005 mm and silt concen...Based on numerical method, effects of silt particle with certain silt mean diameter and silt concentration on the evolution of cavitation in a centrifugal pump were studied. Silt mean diameter 0.005 mm and silt concentration 1.0% were adopted in numerical simulations. Cavitation flow in a flat- nosed cylinder was simulated to validate the designed algorithm. Cavitaton flows of water and silt-laden water were simulated and compared. The results indicate that the silt particles promote the evolution of cavitation. At the outlet pressure of 6.0×10^5 Pa, cavitation bubbles do not exist in the water flow, but a few cavitation bubbles appeare in the silt-laden water flow, demonstrating the silt particles induce the formation of cavitation bubbles. At the outlet pressure of 5.29×10^5 Pa, the vapor volume fraction in the silt-laden water flow is much larger than that in the water flow, indicating that the silt particles enhance the evolution of cavitation. The properties of silt particle, static pressure, flow field structure, turbulent kinetic energy and density difference have a close relationship with the evolution of cavitation.展开更多
The melt filling difficulty in micro cavity is one of the main challenges for micro-injection molding (MIM). An approach employing ultrasound in MIM was proposed. The approach was extensively studied through experimen...The melt filling difficulty in micro cavity is one of the main challenges for micro-injection molding (MIM). An approach employing ultrasound in MIM was proposed. The approach was extensively studied through experiments with a home-made experimental ultrasonic plastification device. The results of the experiments show that polymer ultrasonic plastification speed increases with ultrasonic supply voltage and plastification pressure. When the ultrasonic supply voltage is 200 V and the plastification pressure is 2.0 MPa, the polymer ultrasonic plastification speed reaches the maximum value of 0.111 1 g/s. The results also indicate that the ultrasonic cavitation effect is the most significant effect of all the three effects during polymer ultrasonic plastification process.展开更多
At jet pressures ranging from 80 to 120 MPa, submerged water jets are investigated by numerical simulation and experiment. Numerical simulation enables a systematic analysis of major flow parameters such as jet veloci...At jet pressures ranging from 80 to 120 MPa, submerged water jets are investigated by numerical simulation and experiment. Numerical simulation enables a systematic analysis of major flow parameters such as jet velocity, turbulent kinetic energy as well as void fraction of cavitation. Experiments facilitate an objective assessment of surface morphology, micro hardness and surface roughness of the impinged samples. A comparison is implemented between submerged and non-submerged water jets. The results show that submerged water jet is characterized by low velocity magnitudes relative to non-submerged water jet at the same jet pressure. Shear effect serves as a key factor underlying the inception of cavitation in submerged water jet stream. Predicted annular shape of cavity zone is substantiated by local height distributions associated with experimentally obtained footprints. As jet pressure increases, joint contribution of jet kinetic energy and cavitation is demonstrated. While for non-submerged water jet, impingement force stems exclusively from flow velocity.展开更多
Fine particle flotation has been one of the main problems in many mineral processing plants.The bubble particle collision rate is very low for fine particles,which reduces flotation efficiency.Also,the existence of sl...Fine particle flotation has been one of the main problems in many mineral processing plants.The bubble particle collision rate is very low for fine particles,which reduces flotation efficiency.Also,the existence of slimes is,generally,detrimental to the flotation process,affecting the selectivity and the quality of the concentrates.Besides,it causes an increase in reagents consumption.Hence,in most of processing plants,some of these particles are transmitted to the tailing ponds to reduce the effects of these problems and increase the selectivity of the process.Esfordi phosphate plant in Iran loses more than 30%of its capacity as particles with d 80 finer than 30μm.These fine particles with 15.9%P_(2)O_(5)content are transferred to tailing dam.Processing of fine particles is very important for phosphate industry from economic and environmental aspects.This study addressed the processing of fine tailings(slimes)from a phosphate ore concentrator via flotation,despite the traditional view that ultrafine particles do not float.Phosphate flotation performances in the presence and absence of nanobubbles(NBs)in both mechanical and column cells were compared according to the metallurgical results of the process.NBs(generated by hydrodynamic cavitation)have interesting and exclusive properties such as high stability,durability and high surface area per volume,leading to increase of their utilization in mining-metallurgy and environmental areas.The results of this study revealed that,in the absence of NBs,a concentrate containing 26.9%P_(2)O_(5)with a recovery of 29.13%was obtained using mechanical cells in comparison to 31.6%P_(2)O_(5)with a recovery of 32.74%obtained using column flotation.In the presence of NBs,the recoveries of the concentrate of the mechanical and column flotation increased to 40.49%and 41.26%with 28.47%and 30.43%P_(2)O_(5)contents,respectively.Comparative study showed that the column flotation was almost more efficient for processing the phosphate ore in the presence of the NBs,and had thicker froth layer compared to the mechanical flotation.展开更多
The electric double layer with the transmission of particles was presented based on the principle of electrochemistry.In accordance with this theory,the cavitation catalysis removal mechanism of ultrasonic-pulse elect...The electric double layer with the transmission of particles was presented based on the principle of electrochemistry.In accordance with this theory,the cavitation catalysis removal mechanism of ultrasonic-pulse electrochemical compound machining(UPECM) based on particles was proposed.The removal mechanism was a particular focus and was thus validated by experiments.The principles and experiments of UPECM were introduced,and the removal model of the UPECM based on the principles of UPECM was established.Furthermore,the effects of the material removal rate for the main processing parameters,including the particles size,the ultrasonic vibration amplitude,the pulse voltage and the minimum machining gap between the tool and the workpiece,were also studied through UPECM.The results show that the particles promote ultrasonic-pulse electrochemical compound machining and thus act as the catalyzer of UPECM.The results also indicate that the processing speed,machining accuracy and surface quality can be improved under UPECM compound machining.展开更多
Considering the effect of viscosity-temperature relationship and cavitation of micro-scale film,the influencing factors on hydrodynamic lubrication performance of upstream pumping mechanical seal were investigated bas...Considering the effect of viscosity-temperature relationship and cavitation of micro-scale film,the influencing factors on hydrodynamic lubrication performance of upstream pumping mechanical seal were investigated based on the theory of hydrodynamic lubrication.N-S equation,energy equation,viscosity-temperature equation and vapor transport equation were solved with the finite volume method by using Fluent software,which was performed to analyze the influence of the viscosity-temperature and cavitation effect on hydrodynamic lubrication failure of the film.The research demonstrates that it will lead to the significant difference of the temperature field by considering the coupling of temperature and viscosity.When the film thickness decreases and the rotating speed rises,cavitation regions and viscous friction heat increases,the opening force of the film is also enhanced.However,the growth rate is restricted to the cavitation regions and viscous friction heat,and the opening force begins to decline to a certain extent,and thereby being insufficient to open the surfaces of the seals and leading to the failure of automatic adjustment function and severe wear,lubrication failure occurrs.Through comprehensive research on the influences of viscosity-temperature and cavitation effect on hydrodynamic lubrication performance,the theories of failure and design of upstream pumping mechanical seal are further developed.展开更多
A systematic investigation on the mechanism of dynamic liquid dispersing process via theoretical and experimental approach is presented.The experiments include weak and strong constrained scenarios using the high-spee...A systematic investigation on the mechanism of dynamic liquid dispersing process via theoretical and experimental approach is presented.The experiments include weak and strong constrained scenarios using the high-speed camera technique and the flash X-ray radiography technique.Based on dynamic analysis,one-dimensional characteristics analysis and some numerical simulations on the propagating processes of blast waves before the container shell rupturing,further and detailed analyses of the experimental results are presented.The effects of the liquid viscosity on the dynamic dispersing flow are also analyzed,and the spall fracture mechanism is explored.Thus,the dominating forces determining the dispersing liquid flow are revealed,that is,the stretching and shearing action due to the interaction of two reflecting rarefaction waves in opposite propagating directions.The influence of container shell strength on the dispersing liquid flow is also investigated,and the characters of cavitation layered in liquid before shell rupturing are uncovered.Results revealed that different shell material results in different cavitating layers.Then the different cavitating layers drive the different dynamic liquid dispersing process coming into being.The metastable liquid states caused by pressure drop and cavitation generation are discussed.展开更多
To realize a stable addition of foaming agent used for foam technology, a new adding method using the jet cavitation was introduced, and its performance was investigated experimentally under different operating condit...To realize a stable addition of foaming agent used for foam technology, a new adding method using the jet cavitation was introduced, and its performance was investigated experimentally under different operating conditions. Experimental results show that the bubble region in the jet device has a constant vapor pressure, which creates a good condition for liquid absorption, while it shrinks with increasing outlet pressure. The liquid absorption amount keeps unchanged when the outlet pressure is lower than a critical value. The critical outlet pressure increases by 40% with decreasing cavitation absorption amount, which is especially suitable for mini-flow quantitative addition of foaming agent used for foam dust suppression. Its effectiveness on suppressing mine dust was evaluated in a heading face of underground coal mines. Field application indicates that the reliable and simple foaming system adopting the new adding method makes a marked dust suppression effect. The working environment of heading face is significantly improved, ensuring the safe tunneling and personal security.展开更多
The nozzle inner-flow characteristic of the“spray G”injector was studied by the computational fluid dynamics(CFD)simulation,and the sensitivity of cycle fuel mass to the conicity and entrance radius of the nozzle ho...The nozzle inner-flow characteristic of the“spray G”injector was studied by the computational fluid dynamics(CFD)simulation,and the sensitivity of cycle fuel mass to the conicity and entrance radius of the nozzle hole were analyzed.Results show that the inner conicity of nozzle hole inhibits the development of cavitation phenomena,and increases the injection rate.While the outer conicity of nozzle hole promotes the diffusion of cavita-tion,leading to reductions of the liquid volume fraction of the nozzle outlet and the local flow resistance of the nozzle hole.The sensitivity of cycle fuel mass to inner-cone nozzle hole is stronger than that of the outer-cone noz-zle,especially at the smaller hole conicity.The increase of injection pressure enhances the sensitivity of the injection characteristics to the nozzle hole structure,in which inner-cone nozzle has higher sensitivity coefficient than the outer-cone nozzle hole.However,the increase of injection pressure aggravates the offset of liquid jet to the nozzle axis of the outer-cone nozzle hole.With the increase of the inner conicity of nozzle,the sensitivity of the injection characteristics to the entrance radius of the hole decreases.With the increase of the outer conicity of nozzle hole,the sensitivity of the injection characteristics to the entrance radius of the hole increases.展开更多
基金National Natural Science Foundation of China(51139007)National “Twelfth Five-Year” Plan for Science&Technology Support(2015BAD20B01)China Scholarship Council(201506350088)
文摘The cavitation incipience and development of water flow over a thin hydrofoil placed in the test section of high-speed cavitation tunnel were investigated.Hydrofoils with smooth and rough leading edge were tested for different upstream velocities and incidence angles.The observations clearly revealed that cavitation incipience is enhanced by roughness at incidence angle below 2°.This is in line with the former reports,according to whose roughness element decreases the wettability and traps a larger amount of gas.As a result,surface nucleation is enhanced with an increased risk of cavitation.Surprisingly,for higher incidence angles(>3°),it was found that cavitation incipience is significantly delayed by roughness while developed cavitation is almost the same for both smooth and rough hydrofoils.This unexpected incipience delay is related to the change in the boundary layer structure due to roughness.It was also reported a significant influence of roughness on the dynamic of developed cavitation and shedding of transient cavities.
基金supported by the National Key Basic Research Special Foundation of China (2015CB057301)
文摘Cavitation caused vibration and noise of hydraulic machinery. To some extent,cavitation made fatigue damage in advance. Many scholars found that the re-entrant jets were the reasons of the shedding of cavities. To suppress cavitation,based on the idea of blocking the re-entrant jets,a special surface flow structure of 2D hydrofoil was proposed. The through-hole was made in the proper position of the hydrofoil. The incoming flow can outflow from this jet-hole automatically depending on the pressure difference between pressure side and suction side. Re-entrant jet growth can be weakened by optimizing the jet-hole geometry. Based on the standard k-ε turbulence model and Schnerr & Sauer cavitation model,under different cavitation numbers( σ) and jet-angles( β) for NACA0066( 2D) hydrofoil with 8° angles of attack,cavitation field numerical analysis was carried out. The results show that 2D hydrofoil cavitation flow had a strong unsteadiness. Making a jet-hole at the junction between the re-entrant jet and cavity can effectively minimize cloud cavitation. For a certain cavitation condition,optimal jet-angles( β) can be obtained to control cavitation growth. For the same β,the effects of cavitation suppression were changed with different cavitation numbers( σ). Consequently,suitable jet-angle and jet-position could extend the stable operating range of the hydrofoil.
基金National Key Basic Research Special Foundation of China(2015CB057301)
文摘To study the effectiveness of hydrofoil surface water injection on cavitation suppression,the unsteady cavitation flow field around the NACA0066 hydrofoil at attack angle of 6°was simulated by the modified RNG k-εturbulence model combined with the full-cavitation model.The structure of cavitation flow field and the hydrodynamic performance of hydrofoil were analyzed at the cavitation number of 0.85,0.70,0.55,respectively.The results show that barriered by the jet,the momentum of the reentrant jet was reduced;The development of cavitation and the strength of cavity shedding were weakened to some extent.Cavitation suppression effect was very obvious in the cavitation conditions with the cavitation number of 0.7 and above when the injection position was at 37% chord length from the hydrofoil leading edge and the jet-flow ratio kept 0.3.Time-averaged lift and drag coefficient were reduced,and the lift-drag ratio increased in water injection conditions.
文摘A single bubble trapped at an antinode of an acoustic standing wave field in water can emit 50ps-140ps light pulses, called “single bubble sonoluminescence” (SBSL). It arouses much interest in physical acoustics because of its highly non-linear characteristics, high concentration of energy, and stable cavitation behavior. In this paper, bubble stability, the dynamic behavior of bubbles, non-invasive measurement of driving acoustic pressure and Mie scattering method are introduced.
基金supported by the Program for National Defense Science and Technology Foundation Strengtheningthe Youth Foundation of Rocket Force University of Engineering(Grant No.2021QN-B014)。
文摘A submerged cavitation water jet(SCWJ)is an effective method to recycle solid propellant from obsolete solid engines by the breaking method.Solid propellant's breaking modes and mechanical process under SCWJ impact are unclear.This study aims to understand those impact breaking mechanisms.The hydroxyl-terminated polybutadiene(HTPB)propellant was chosen as the research material,and a self-designed test system was used to conduct impact tests at four different working pressures.The high-speed camera characterized crack propagation,and the DIC method calculated strain change during the impact process.Besides,micro and macro fracture morphologies were characterized by scanning electron microscope(SEM)and computed tomography(CT)scanning.The results reveal that the compressive strain concentration region locates right below the nozzle,and the shear strain region distributes symmetrically with the jet axis,which increases to 4% at first 16th ms,the compressive strain rises to 2% and 6% in the axial and transverse direction,respectively.The two tensile cracks formed first at the compression strain concentrate region,and there generate many shear cracks around the tensile cracks,and those shear cracks that develop and aggregate cause the cracks to become wider and cut through the tensile cracks,forming the tensile-shear cracks and the impact parts eventually fail.The HTPB propellant forms a breaking hole shaped conical after impact 10 s.The mass loss increases by 17 times at maximum,with the working pressure increasing by three times.Meanwhile,the damage value of the breaking hole remaining on the surface increases by 7.8 times while 2.9 times in the depth of the breaking hole.The breaking efficiency is closely affected by working pressures.The failure modes of HTPB impacted by SCWJ are classified as tensile crack-dominated and tensile-shear crack-dominated damage mechanisms.
基金Projects(51505289,51275123)supported by the National Natural Science Foundation of China
文摘Cavitation bubble collapse has a great influence on the temperature of hydraulic oil. Herein, cone-type throttle valve experiments are carried out to study the thermodynamic processes of cavitation. First, the processes of growth and collapse are analysed, and the relationships between the hydraulic oil temperature and bubble growth and collapse are deduced. The effect of temperature is then considered on the hydraulic oil viscosity and saturated vapour pressure. Additionally, an improved form of the Rayleigh–Plesset equation is developed. The effect of cavitation on the hydraulic oil temperature is experimentally studied and the effects of cavitation bubble collapse in the hydraulic system are summarised. Using the cone-type throttle valve as an example, a method to suppress cavitation is proposed.
基金Comprehensive Health Management Promotion Center of Xihua University(kgl2018-019)Scientific Research Project of the Education Department of Sichuan,China(18ZB0560)National Natural Science Foundation of China(51279172)
文摘Cavitation will reduce the turbine performance and even damage the turbine components.To verify the effects of splitter blades on improving the cavitation performance,the cavitation flow inside a Francis turbine runner with splitter blades was numerically simulated by using the Singhal cavitation model and the standard k-ε turbulence model.The distributions of static pressure and gas volume fractions on the surface of the runner blades were predicated under different conditions,and the cavitation in the flow field of the runner was analyzed.The results show that the static pressure and gas volume fractions are more uniformly distributed on the short blades than those on the long blades in Francis turbines with splitter blades,and there is almost no cavitation on the short blades;their distributions are more uniform under small flow conditions than those under large flow conditions;and large gas volume fractions are concentrated at the outlet tip near the band on the suction side of the long blade.The installation of splitter blades can improve the cavitation performance of conventional Francis turbines.
基金The research was supported by the National Natural Science Foundation of China(No.51422906).References
文摘A finite volume,multiphase solver in the framework of OpenFOAM was used to calculate the flow field of the cavitating flow over the Clark-Y hydrofoil. This solver used Transport Based Equation Model(TEM) to solve the liquid volume fraction,and utilized volume of fluid(VOF) technique to predict the interface between liquid and vapor phases. The simulation was designed to study the cavitation shedding and different fluid characteristics in the cloud cavitation regime when adopting two different Large Eddy Simulation(LES) models,namely,one equation eddy viscosity(one EqEddy) model and Smagorinsky model. It is shown that these two models can be used to study the cavitation shedding dynamics and predict the velocity profiles.
基金Gansu Province Natural Science Foundation of China(18JR3RA149)
文摘Based on numerical method, effects of silt particle with certain silt mean diameter and silt concentration on the evolution of cavitation in a centrifugal pump were studied. Silt mean diameter 0.005 mm and silt concentration 1.0% were adopted in numerical simulations. Cavitation flow in a flat- nosed cylinder was simulated to validate the designed algorithm. Cavitaton flows of water and silt-laden water were simulated and compared. The results indicate that the silt particles promote the evolution of cavitation. At the outlet pressure of 6.0×10^5 Pa, cavitation bubbles do not exist in the water flow, but a few cavitation bubbles appeare in the silt-laden water flow, demonstrating the silt particles induce the formation of cavitation bubbles. At the outlet pressure of 5.29×10^5 Pa, the vapor volume fraction in the silt-laden water flow is much larger than that in the water flow, indicating that the silt particles enhance the evolution of cavitation. The properties of silt particle, static pressure, flow field structure, turbulent kinetic energy and density difference have a close relationship with the evolution of cavitation.
基金Project(107086)supported by the Key Program of Chinese Ministry of EducationProject(2009)supported by the Graduate Degree Thesis Innovation Foundation of Central South University,China
文摘The melt filling difficulty in micro cavity is one of the main challenges for micro-injection molding (MIM). An approach employing ultrasound in MIM was proposed. The approach was extensively studied through experiments with a home-made experimental ultrasonic plastification device. The results of the experiments show that polymer ultrasonic plastification speed increases with ultrasonic supply voltage and plastification pressure. When the ultrasonic supply voltage is 200 V and the plastification pressure is 2.0 MPa, the polymer ultrasonic plastification speed reaches the maximum value of 0.111 1 g/s. The results also indicate that the ultrasonic cavitation effect is the most significant effect of all the three effects during polymer ultrasonic plastification process.
基金Projects(51205171,51376081)supported by the National Natural Science Foundation of ChinaProject(1201026B)supported by the Postdoctoral Science Foundation of Jiangsu Province,China
文摘At jet pressures ranging from 80 to 120 MPa, submerged water jets are investigated by numerical simulation and experiment. Numerical simulation enables a systematic analysis of major flow parameters such as jet velocity, turbulent kinetic energy as well as void fraction of cavitation. Experiments facilitate an objective assessment of surface morphology, micro hardness and surface roughness of the impinged samples. A comparison is implemented between submerged and non-submerged water jets. The results show that submerged water jet is characterized by low velocity magnitudes relative to non-submerged water jet at the same jet pressure. Shear effect serves as a key factor underlying the inception of cavitation in submerged water jet stream. Predicted annular shape of cavity zone is substantiated by local height distributions associated with experimentally obtained footprints. As jet pressure increases, joint contribution of jet kinetic energy and cavitation is demonstrated. While for non-submerged water jet, impingement force stems exclusively from flow velocity.
基金Project supported by Iran Mineral Processing Research Center(IMPRC)。
文摘Fine particle flotation has been one of the main problems in many mineral processing plants.The bubble particle collision rate is very low for fine particles,which reduces flotation efficiency.Also,the existence of slimes is,generally,detrimental to the flotation process,affecting the selectivity and the quality of the concentrates.Besides,it causes an increase in reagents consumption.Hence,in most of processing plants,some of these particles are transmitted to the tailing ponds to reduce the effects of these problems and increase the selectivity of the process.Esfordi phosphate plant in Iran loses more than 30%of its capacity as particles with d 80 finer than 30μm.These fine particles with 15.9%P_(2)O_(5)content are transferred to tailing dam.Processing of fine particles is very important for phosphate industry from economic and environmental aspects.This study addressed the processing of fine tailings(slimes)from a phosphate ore concentrator via flotation,despite the traditional view that ultrafine particles do not float.Phosphate flotation performances in the presence and absence of nanobubbles(NBs)in both mechanical and column cells were compared according to the metallurgical results of the process.NBs(generated by hydrodynamic cavitation)have interesting and exclusive properties such as high stability,durability and high surface area per volume,leading to increase of their utilization in mining-metallurgy and environmental areas.The results of this study revealed that,in the absence of NBs,a concentrate containing 26.9%P_(2)O_(5)with a recovery of 29.13%was obtained using mechanical cells in comparison to 31.6%P_(2)O_(5)with a recovery of 32.74%obtained using column flotation.In the presence of NBs,the recoveries of the concentrate of the mechanical and column flotation increased to 40.49%and 41.26%with 28.47%and 30.43%P_(2)O_(5)contents,respectively.Comparative study showed that the column flotation was almost more efficient for processing the phosphate ore in the presence of the NBs,and had thicker froth layer compared to the mechanical flotation.
基金Project(51275116)supported by the National Natural Science Foundation of ChinaProject(2012ZE77010)supported by the Aero Science Foundation of ChinaProject(LBH-Q11090)supported by the Postdoctoral Science Research Development Foundation of Heilongjiang Province,China
文摘The electric double layer with the transmission of particles was presented based on the principle of electrochemistry.In accordance with this theory,the cavitation catalysis removal mechanism of ultrasonic-pulse electrochemical compound machining(UPECM) based on particles was proposed.The removal mechanism was a particular focus and was thus validated by experiments.The principles and experiments of UPECM were introduced,and the removal model of the UPECM based on the principles of UPECM was established.Furthermore,the effects of the material removal rate for the main processing parameters,including the particles size,the ultrasonic vibration amplitude,the pulse voltage and the minimum machining gap between the tool and the workpiece,were also studied through UPECM.The results show that the particles promote ultrasonic-pulse electrochemical compound machining and thus act as the catalyzer of UPECM.The results also indicate that the processing speed,machining accuracy and surface quality can be improved under UPECM compound machining.
基金National Natural Science Foundation of China(Grant No.51279067)
文摘Considering the effect of viscosity-temperature relationship and cavitation of micro-scale film,the influencing factors on hydrodynamic lubrication performance of upstream pumping mechanical seal were investigated based on the theory of hydrodynamic lubrication.N-S equation,energy equation,viscosity-temperature equation and vapor transport equation were solved with the finite volume method by using Fluent software,which was performed to analyze the influence of the viscosity-temperature and cavitation effect on hydrodynamic lubrication failure of the film.The research demonstrates that it will lead to the significant difference of the temperature field by considering the coupling of temperature and viscosity.When the film thickness decreases and the rotating speed rises,cavitation regions and viscous friction heat increases,the opening force of the film is also enhanced.However,the growth rate is restricted to the cavitation regions and viscous friction heat,and the opening force begins to decline to a certain extent,and thereby being insufficient to open the surfaces of the seals and leading to the failure of automatic adjustment function and severe wear,lubrication failure occurrs.Through comprehensive research on the influences of viscosity-temperature and cavitation effect on hydrodynamic lubrication performance,the theories of failure and design of upstream pumping mechanical seal are further developed.
基金the support of National Nature Science Foundation of China, the support numbers are No. 10572149 and No.10676120the National Key Research and Development program of China (subject no. 2017YFC0209901) for its support to the work of this paper
文摘A systematic investigation on the mechanism of dynamic liquid dispersing process via theoretical and experimental approach is presented.The experiments include weak and strong constrained scenarios using the high-speed camera technique and the flash X-ray radiography technique.Based on dynamic analysis,one-dimensional characteristics analysis and some numerical simulations on the propagating processes of blast waves before the container shell rupturing,further and detailed analyses of the experimental results are presented.The effects of the liquid viscosity on the dynamic dispersing flow are also analyzed,and the spall fracture mechanism is explored.Thus,the dominating forces determining the dispersing liquid flow are revealed,that is,the stretching and shearing action due to the interaction of two reflecting rarefaction waves in opposite propagating directions.The influence of container shell strength on the dispersing liquid flow is also investigated,and the characters of cavitation layered in liquid before shell rupturing are uncovered.Results revealed that different shell material results in different cavitating layers.Then the different cavitating layers drive the different dynamic liquid dispersing process coming into being.The metastable liquid states caused by pressure drop and cavitation generation are discussed.
基金Project(51474216)supported by the National Natural Science Foundation of ChinaProject supported by the Priority Academic Program Development(PAPD)of Jiangsu Higher Education Institutions,ChinaProject(2012DXS02)supported by the Fundamental Research Funds for the Central Universities,China
文摘To realize a stable addition of foaming agent used for foam technology, a new adding method using the jet cavitation was introduced, and its performance was investigated experimentally under different operating conditions. Experimental results show that the bubble region in the jet device has a constant vapor pressure, which creates a good condition for liquid absorption, while it shrinks with increasing outlet pressure. The liquid absorption amount keeps unchanged when the outlet pressure is lower than a critical value. The critical outlet pressure increases by 40% with decreasing cavitation absorption amount, which is especially suitable for mini-flow quantitative addition of foaming agent used for foam dust suppression. Its effectiveness on suppressing mine dust was evaluated in a heading face of underground coal mines. Field application indicates that the reliable and simple foaming system adopting the new adding method makes a marked dust suppression effect. The working environment of heading face is significantly improved, ensuring the safe tunneling and personal security.
文摘The nozzle inner-flow characteristic of the“spray G”injector was studied by the computational fluid dynamics(CFD)simulation,and the sensitivity of cycle fuel mass to the conicity and entrance radius of the nozzle hole were analyzed.Results show that the inner conicity of nozzle hole inhibits the development of cavitation phenomena,and increases the injection rate.While the outer conicity of nozzle hole promotes the diffusion of cavita-tion,leading to reductions of the liquid volume fraction of the nozzle outlet and the local flow resistance of the nozzle hole.The sensitivity of cycle fuel mass to inner-cone nozzle hole is stronger than that of the outer-cone noz-zle,especially at the smaller hole conicity.The increase of injection pressure enhances the sensitivity of the injection characteristics to the nozzle hole structure,in which inner-cone nozzle has higher sensitivity coefficient than the outer-cone nozzle hole.However,the increase of injection pressure aggravates the offset of liquid jet to the nozzle axis of the outer-cone nozzle hole.With the increase of the inner conicity of nozzle,the sensitivity of the injection characteristics to the entrance radius of the hole decreases.With the increase of the outer conicity of nozzle hole,the sensitivity of the injection characteristics to the entrance radius of the hole increases.