期刊文献+
共找到18篇文章
< 1 >
每页显示 20 50 100
基于CatBoost和SHAP的高级别自动驾驶车辆非预期停车冲突风险预测
1
作者 刘擎超 王瑞海 +2 位作者 蔡英凤 王海 陈龙 《汽车安全与节能学报》 北大核心 2025年第1期170-180,共11页
针对高级别自动驾驶车辆非预期停车引发的交通冲突及其环境影响问题,现有研究缺乏对风险特征交互的捕获和可解释性评估。本研究提出了一种基于CatBoost和SHAP的风险预测及解释模型,通过分析城市中心、住宅区和郊区交通网络的接管次数,... 针对高级别自动驾驶车辆非预期停车引发的交通冲突及其环境影响问题,现有研究缺乏对风险特征交互的捕获和可解释性评估。本研究提出了一种基于CatBoost和SHAP的风险预测及解释模型,通过分析城市中心、住宅区和郊区交通网络的接管次数,构建了冲突风险预测模型。结果表明,接管次数在城市中心、住宅区和郊区分别为161次、227次和164次,最高单路段接管次数分别为11次、11次和16次;模型预测精度达93%以上。SHAP分析显示,前后车辆间相对速度和相对位置对冲突风险的影响显著。研究结果对提升自动驾驶车辆的可靠性和安全性具有重要意义。 展开更多
关键词 冲突风险 交通排放 高级别自动驾驶 catboost算法 SHAP解释模型
在线阅读 下载PDF
基于CatBoost-MOEAD的大直径泥水盾构施工多目标预测优化 被引量:2
2
作者 吴贤国 刘俊 +2 位作者 苏飞鸣 陈虹宇 冯宗宝 《中国安全科学学报》 CAS CSCD 北大核心 2024年第6期57-64,共8页
为有效优化盾构施工参数,实现在大直径泥水盾构掘进过程中安全、高效和节能的目标,提出分类助推(CatBoost)和基于分解的多目标进化算法(MOEAD)相结合的混合智能算法;综合考虑盾构施工参数与地质条件,以主要的盾构施工参数为研究对象,选... 为有效优化盾构施工参数,实现在大直径泥水盾构掘进过程中安全、高效和节能的目标,提出分类助推(CatBoost)和基于分解的多目标进化算法(MOEAD)相结合的混合智能算法;综合考虑盾构施工参数与地质条件,以主要的盾构施工参数为研究对象,选择地表沉降、贯入度和掘进比能为预测和控制目标;优化调控选择的盾构施工参数,并以武汉市轨道交通某号线为例,验证该混合算法的有效性。结果表明:采用CatBoost算法建立的预测模型在大直径泥水盾构上表现出来的预测性能良好,对3个控制目标的拟合精度(R 2)均达到0.9以上;预测模型的重要性排序表明:大直径泥水盾构的总推进力和推进速度对地表沉降、贯入度和掘进比能有显著影响;所提出的CatBoost-MOEAD混合智能算法对3个控制目标的优化效果明显,地表沉降、贯入度和掘进比能分别达到12.35%、7.47%和10.70%的优化幅度,并给出相应盾构施工参数的控制范围。 展开更多
关键词 大直径泥水盾构 分类助推(catboost) 基于分解的多目标进化算法(MOEAD) 多目标优化 地表沉降
在线阅读 下载PDF
基于CatBoost-NSGA-Ⅲ算法的盾构姿态预测与优化
3
作者 吴贤国 刘俊 +3 位作者 曹源 雷宇 李士范 覃亚伟 《中国安全科学学报》 CAS CSCD 北大核心 2024年第8期69-77,共9页
为解决盾构掘进过程中因盾构前倾变形、蛇形、轴线偏离及纠偏等影响施工安全性与高效性的问题,提出一种将类别型特征梯度提升(CatBoost)与第三代非支配排序遗传算法(NSGA-Ⅲ)相结合的盾构姿态多目标优化方法;以贵阳地铁为例,选取22个影... 为解决盾构掘进过程中因盾构前倾变形、蛇形、轴线偏离及纠偏等影响施工安全性与高效性的问题,提出一种将类别型特征梯度提升(CatBoost)与第三代非支配排序遗传算法(NSGA-Ⅲ)相结合的盾构姿态多目标优化方法;以贵阳地铁为例,选取22个影响因素作为输入参数,利用CatBoost算法建立输入参数与盾构姿态之间的非线性映射函数关系,采用随机森林(RF)算法评价输入参数的重要性;以盾构姿态绝对值最小化为目标,构建CatBoost-NSGA-Ⅲ多目标优化模型,并通过案例分析验证所提方法的适用性和有效性。结果表明:采用CatBoost算法训练工程实测数据得到的预测模型具有较高的精度,5个盾构姿态目标的R^(2)范围为0.916~0.943;所研发的CatBoost-NSGA-Ⅲ盾构姿态多目标优化方法,可使盾构姿态得到显著优化,整体改进的平均值为53.34%。 展开更多
关键词 类别型特征梯度提升(catboost) 第三代非支配排序遗传算法(NSGA-Ⅲ) 盾构姿态 多目标优化 重要性排序
在线阅读 下载PDF
基于CatBoost-MOEAD的大直径泥水盾构姿态多目标预测与优化
4
作者 吴贤国 刘俊 +1 位作者 王静怡 覃亚伟 《中国安全科学学报》 CAS CSCD 北大核心 2024年第10期50-57,共8页
为避免盾构掘进过程中出现蛇形、轴线偏离等姿态异常问题影响施工安全,提出一种结合类别提升(CatBoost)算法和基于分解的多目标优化算法(MOEAD)的大直径泥水盾构姿态控制方法;构建一个盾构姿态预测模型,该模型包含19个输入参数和6个输... 为避免盾构掘进过程中出现蛇形、轴线偏离等姿态异常问题影响施工安全,提出一种结合类别提升(CatBoost)算法和基于分解的多目标优化算法(MOEAD)的大直径泥水盾构姿态控制方法;构建一个盾构姿态预测模型,该模型包含19个输入参数和6个输出参数,利用CatBoost算法构建输入参数与输出参数之间的非线性映射关系;采用沙普利加性解释法(SHAP)分析输入参数对盾构姿态的影响;结合多目标优化算法构建CatBoost-MOEAD盾构姿态多目标优化模型,将所提模型运用到武汉长江大直径泥水盾构隧道工程中,分析验证所提方法的适用性和有效性。结果表明:CatBoost预测模型能够高效地预测大直径泥水盾构的姿态,其中6个盾构姿态目标的决定系数范围为0.931~0.974,均方根误差范围为0.030~0.880,误差范围为0.039~1.057;对盾构姿态影响较大的施工参数中推进组推力对盾构姿态的影响最为显著;通过研发的CatBoost-MOEAD盾构姿态多目标优化方法,盾构姿态的优化效果显著,优化率可达38.86%。 展开更多
关键词 类别提升(catboost) 基于分解的多目标优化算法(MOEAD) 大直径泥水盾构 盾构姿态 多目标优化 沙普利加性解释法(SHAP)
在线阅读 下载PDF
基于CatBoost-NSGA-Ⅲ的盾构隧道施工参数分析及优化控制 被引量:1
5
作者 陈礼博 张明书 +2 位作者 陈海勇 吴贤国 曹源 《隧道建设(中英文)》 CSCD 北大核心 2024年第8期1587-1598,共12页
由于盾构在施工过程中受环境、设备和作业等不确定因素的影响,导致隧道开挖的安全性、效率和成本难以协调。针对这种情况,以武汉轨道交通某标段施工为依托,采用基于梯度增强(CatBoost)和非支配排序遗传算法(NSGA-Ⅲ)的混合算法,在全面... 由于盾构在施工过程中受环境、设备和作业等不确定因素的影响,导致隧道开挖的安全性、效率和成本难以协调。针对这种情况,以武汉轨道交通某标段施工为依托,采用基于梯度增强(CatBoost)和非支配排序遗传算法(NSGA-Ⅲ)的混合算法,在全面考虑掘进效率、成本、安全风险等因素的基础上,选择以推进速度、掘进比能、刀具磨损量为目标,构建施工参数智能控制决策系统。首先,通过CatBoost回归模型预测盾构隧道推进速度、掘进比能和刀具磨损量,得到控制目标的适应度函数;然后,基于CatBoost预测模型构建的适应度函数,利用CatBoost-NSGA-Ⅲ进行施工参数的多目标优化;最后,通过模糊决策法从多个Pareto最优解集中选出最佳的施工参数组合,为隧道盾构掘进参数智能预测与优化提供参考。结果表明:1)Catboost可以进行模型精准预测,拟合优度R2大于0.9,均方根误差RMSE和平均绝对误差MAE较小;2)Catboost-NSGA-Ⅲ多目标优化,模糊决策法确定最优方案。经过优化,相较于实测数据的平均值,掘进比能和刀具磨损量分别降低5.3%和13.5%、掘进速度提升6.3%,为盾构隧道的智能化掘进控制和管理决策提供依据。 展开更多
关键词 盾构施工 推进速度 掘进比能 刀具磨损量 施工参数 多目标优化 catboost-NSGA-Ⅲ算法
在线阅读 下载PDF
砂泥岩地层岩性智能识别方法与应用——以新疆轮南侏罗系岩层为例 被引量:2
6
作者 蔡明 周庆文 +6 位作者 杨聪 陈枫 伍东 林旺 章成广 张远君 苗雨欣 《煤田地质与勘探》 北大核心 2025年第1期235-244,共10页
【目的】岩性识别是储层精细评价的基础,传统方法一般仅用2~3种测井参数的交互关系进行岩性识别,测井信息利用率低,对于岩性测井响应差异小的地层岩性识别精度低,严重制约了老井复查效果。高效的智能分类算法CatBoost可充分挖掘多源测... 【目的】岩性识别是储层精细评价的基础,传统方法一般仅用2~3种测井参数的交互关系进行岩性识别,测井信息利用率低,对于岩性测井响应差异小的地层岩性识别精度低,严重制约了老井复查效果。高效的智能分类算法CatBoost可充分挖掘多源测井信息与岩性的关联。【方法】以新疆轮南地区侏罗系砂泥岩储层为研究对象,通过敏感性分析选取自然伽马、自然电位、深浅电阻率比值、声波时差和密度5个测井参数,构建基于CatBoost算法的岩性智能识别模型。利用优化的模型处理实际井资料以进行地层岩性识别,通过准确率、精确率和召回率综合评估模型的岩性识别效果,并对比分析了其与随机森林和KNN算法模型的识别效果。【结果和结论】结果表明:轮南侏罗系大类岩性包括泥岩、砂岩和砾岩,细分岩性复杂;根据岩性敏感测井参数利用CatBoost算法建立的岩性智能预测模型对目标储层细分岩性的识别准确率达92.64%,显著高于随机森林模型的82.95%和KNN模型的70.16%,证明该方法能有效解决研究区的岩性识别问题。研究成果不仅为轮南地区老井复查和进一步勘探开发提供了科学依据,还为复杂岩性精细识别方法研究提供重要参考。 展开更多
关键词 测井 岩性识别 人工智能 catboost 梯度提升算法
在线阅读 下载PDF
基于Boosting算法的文本自动分类器设计 被引量:13
7
作者 董乐红 耿国华 周明全 《计算机应用》 CSCD 北大核心 2007年第2期384-386,共3页
Boosting算法是目前流行的一种机器学习算法。采用一种改进的Boosting算法Adaboost.MH^(KR)作为分类算法,设计了一个文本自动分类器,并给出了评估方法和结果。评价表明,该分类器有很好的分类精度。
关键词 文本分类 机器学习 boosting算法
在线阅读 下载PDF
基于Boosting机制的Naive Bayesian文本分类器 被引量:3
8
作者 崔林 付克明 +1 位作者 石生树 宋瀚涛 《计算机工程与应用》 CSCD 北大核心 2005年第8期31-33,67,共4页
Naive Bayesian分类器是一种有效的文本分类方法,但由于具有较强的稳定性,很难通过Boosting机制提高其性能。因此用Naive Bayesian分类器作为Boosting的基分类器需要解决的最大问题,就是如何破坏Naive Bayesian分类器的稳定性。提出了3... Naive Bayesian分类器是一种有效的文本分类方法,但由于具有较强的稳定性,很难通过Boosting机制提高其性能。因此用Naive Bayesian分类器作为Boosting的基分类器需要解决的最大问题,就是如何破坏Naive Bayesian分类器的稳定性。提出了3种破坏Naive Bayesian学习器稳定性的方法。第一种方法改变训练集样本,第二种方法采用随机属性选择社团,第三种方法是在Boosting的每次迭代中利用不同的文本特征提取方法建立不同的特征词集。实验表明,这几种方法各有其优缺点,但都比原有方法准确、高效。 展开更多
关键词 boosting NAIVE BAYESIAN CLASSIFIER 文本分类 文本挖掘 数据挖掘
在线阅读 下载PDF
基于Boosting算法集成遗传模糊分类器的文本分类 被引量:1
9
作者 罗军 况夯 《计算机应用》 CSCD 北大核心 2008年第9期2386-2388,2391,共4页
提出一种新颖的基于Boosting模糊分类的文本分类方法。首先采用潜在语义索引(LSI)对文本特征进行选择;然后提出Boosting算法集成模糊分类器学习,在每轮迭代训练过程中,算法通过调整训练样本的分布,利用遗传算法产生分类规则。减少分类... 提出一种新颖的基于Boosting模糊分类的文本分类方法。首先采用潜在语义索引(LSI)对文本特征进行选择;然后提出Boosting算法集成模糊分类器学习,在每轮迭代训练过程中,算法通过调整训练样本的分布,利用遗传算法产生分类规则。减少分类规则能够正确分类样本的权值,使得新产生的分类规则重点考虑难于分类的样本。实验结果表明,该文本分类算法具有良好分类的性能。 展开更多
关键词 模糊分类 特征选择 潜在语义索引 boosting算法 文本分类
在线阅读 下载PDF
基于个性化联邦学习的异构船舶航行油耗预测 被引量:1
10
作者 韩沛秀 孙卓 +1 位作者 刘忠波 闫椿昕 《计算机集成制造系统》 北大核心 2025年第1期182-196,共15页
船舶航行油耗的精准预测,对保护海洋环境、减少航运业运营成本起关键作用,但航运业船舶的数据私密性、及异构船舶的数据异质性,导致常规机器学习方法的预测效果有限。为此,提出一种基于类别型特征的梯度提升(CatBoost)联合个性化联邦学... 船舶航行油耗的精准预测,对保护海洋环境、减少航运业运营成本起关键作用,但航运业船舶的数据私密性、及异构船舶的数据异质性,导致常规机器学习方法的预测效果有限。为此,提出一种基于类别型特征的梯度提升(CatBoost)联合个性化联邦学习(PFL)预测方法。首先,对本地不同数据源的船舶信息数据及海况数据进行数据融合和清洗过滤,以提高输入数据质量;其次,对本地融合数据用CatBoost进行特征选取,以去除冗余数据;随后,引入带个性化层的联邦学习(FedPer)框架,建立异构船舶航行油耗预测模型,以保证异构船舶的数据私密性;进一步,对基本层权重矩阵采用联邦平均算法(FedAvg)聚合参数并反馈,对个性化层权重矩阵由本地客户端采用深度前馈神经网络(DFNN)进行训练优化,以消除数据异质性的影响,提高预测精度。最后,结合实际异构船舶航行油耗算例进行对比实验,结果表明,相比于其他模型,CatBoost联合个性化联邦学习预测方法的预测精度更高,对降低异构船舶航行油耗具有一定的指导意义。 展开更多
关键词 异构船舶航行油耗预测 个性化联邦学习 基于类别型特征的梯度提升 联邦平均算法 深度前馈神经网络
在线阅读 下载PDF
基于机器学习的氢化丁腈橡胶力学性能预测模型
11
作者 丁瀚林 赵骞 +3 位作者 张洁 孙思嘉 陈皓哲 陈鹏 《安徽大学学报(自然科学版)》 北大核心 2025年第3期90-99,共10页
氢化丁腈橡胶(HNBR)力学性能与橡胶配方和加工工艺密切相关.为探究材料配方与工艺对氢化丁腈橡胶力学性能的影响规律,笔者收集了32篇公开报道文献中的313份实验研究数据,提取了各文献中的体系配方、硫化工艺、橡胶拉伸强度数据,设计了... 氢化丁腈橡胶(HNBR)力学性能与橡胶配方和加工工艺密切相关.为探究材料配方与工艺对氢化丁腈橡胶力学性能的影响规律,笔者收集了32篇公开报道文献中的313份实验研究数据,提取了各文献中的体系配方、硫化工艺、橡胶拉伸强度数据,设计了极端梯度提升模型(XGBoost)与类别增强型提升模型(CatBoost)2种机器学习模型.首先对输入特征进行独热编码,之后采用2种机器学习方法进行训练,比较2种模型的预测精度、泛化能力,并进行特征重要性分析.2种模型的预测精度均超过0.92.特征重要性分析表明,炭黑含量和交联剂含量为关键的工艺参数,但2种模型描述的特征重要性比率存在差异.研究结果对研究氢化丁腈橡胶的工艺配方设计和发展机器学习技术在橡胶材料领域的应用具有重要的探索意义. 展开更多
关键词 氢化丁腈橡胶 机器学习 极端梯度提升模型 类别增强型提升模型 力学性能
在线阅读 下载PDF
Web网页信息文本分类的研究 被引量:5
12
作者 李净 袁小华 沈晓晶 《计算机工程与设计》 CSCD 北大核心 2008年第23期6026-6028,共3页
面对海量的信息如何挖掘出有用的知识是当前研究的热点问题,对Web文本进行分类预处理,可在一定程度上解决此问题。针对Web文档的多主题特性,采用了多分类器模型,根据Web文档具有结构信息的特点,提出了系统的分类框架,对于短小文档采用Bo... 面对海量的信息如何挖掘出有用的知识是当前研究的热点问题,对Web文本进行分类预处理,可在一定程度上解决此问题。针对Web文档的多主题特性,采用了多分类器模型,根据Web文档具有结构信息的特点,提出了系统的分类框架,对于短小文档采用Boosting和Web文档结构Bayesian分类模型,而对于长文档采用Boosting和综合Bayesian分类模型。实验结果表明,此分类框架具有较好的分类效果。 展开更多
关键词 WEB文本分类 多主题 多分类器 boosting算法 综合Bayesian分类法
在线阅读 下载PDF
中文文本分类器的设计 被引量:10
13
作者 陆建江 张文献 《计算机工程与应用》 CSCD 北大核心 2002年第15期49-51,共3页
文本分类是指在给定分类体系下,根据文本的内容自动确定文本类型的过程。文章应用球形的k-均值算法确定每个文本的类标签,并通过Boosting算法构建分类器。构建的分类器具有以下特点:分类器的设计针对未知类标签的语料库,实用性好;分类... 文本分类是指在给定分类体系下,根据文本的内容自动确定文本类型的过程。文章应用球形的k-均值算法确定每个文本的类标签,并通过Boosting算法构建分类器。构建的分类器具有以下特点:分类器的设计针对未知类标签的语料库,实用性好;分类器能随着语料库中文本的变化而增加新的类,具有很好的可扩展性;分类器基于Boosting算法,具有很好的分类精度。 展开更多
关键词 中文文本分类器 设计 机器学习 boosting算法 自然语言处理
在线阅读 下载PDF
利用置信度重取样的SemiBoost-CR分类模型 被引量:5
14
作者 唐焕玲 鲁明羽 《计算机科学与探索》 CSCD 2011年第11期1048-1056,共9页
结合半监督学习和集成学习方法,提出了一种基于置信度重取样的SemiBoost-CR分类模型。给出了基于标注近邻与未标注近邻的置信度计算公式,按照置信度重采样,不仅选取一定比例置信度较高的未标注样本,而且选取一定比例置信度较低的未标注... 结合半监督学习和集成学习方法,提出了一种基于置信度重取样的SemiBoost-CR分类模型。给出了基于标注近邻与未标注近邻的置信度计算公式,按照置信度重采样,不仅选取一定比例置信度较高的未标注样本,而且选取一定比例置信度较低的未标注样本,分别以不同的策略加入到已标注的训练样本集。引入置信度高的未标注样本,用以提高基分类器的正确性(accuracy);而引入置信度低的未标注样本,目的则是进一步增加基分类器间的差异性(diversity)。对比实验表明,SemiBoost-CR分类模型能够有效提升Naive Bayesian文本分类器的性能。 展开更多
关键词 boosting 半监督分类 朴素贝叶斯 置信度 重取样
在线阅读 下载PDF
一个中文文本自动分类器的设计
15
作者 董乐红 耿国华 周明全 《计算机应用与软件》 CSCD 北大核心 2008年第4期14-16,共3页
Boosting算法是目前流行的一种机器学习算法。采用Boosting家族的Adaboost.MH算法作为分类算法,设计了一个中文文本自动分类器,并给出了评估方法和结果。评价表明,该分类器和SVM的分类精度相当,而较基于其他分类算法的分类器有更好的分... Boosting算法是目前流行的一种机器学习算法。采用Boosting家族的Adaboost.MH算法作为分类算法,设计了一个中文文本自动分类器,并给出了评估方法和结果。评价表明,该分类器和SVM的分类精度相当,而较基于其他分类算法的分类器有更好的分类精度。 展开更多
关键词 文本分类 机器学习 boosting算法
在线阅读 下载PDF
文本分类中连续属性离散化方法的研究
16
作者 董乐红 耿国华 周明全 《小型微型计算机系统》 CSCD 北大核心 2009年第11期2222-2225,共4页
针对机器学习领域的一些分类算法不能处理连续属性的问题,提出一种基于词出现和信息增益相结合的多区间连续属性离散化方法.该算法定义了一个离散化过程,离散化了采用传统信息检索的加权技术生成的非二值特征词空间,然后判断原特征空间... 针对机器学习领域的一些分类算法不能处理连续属性的问题,提出一种基于词出现和信息增益相结合的多区间连续属性离散化方法.该算法定义了一个离散化过程,离散化了采用传统信息检索的加权技术生成的非二值特征词空间,然后判断原特征空间中每个特征词属于或不属于某给定子区间,将问题转换成二值表示方式,以使得这些分类算法适用于连续属性值.实验结果表明,该算法离散过程简单高效,预测精度高,可理解性强. 展开更多
关键词 机器学习 文本分类 信息增益 连续属性离散化 boosting算法
在线阅读 下载PDF
基于最大熵的文本分类算法的改进
17
作者 贺兴时 杨成成 《西安石油大学学报(自然科学版)》 CAS 北大核心 2009年第6期77-79,共3页
基于最大熵模型的文本分类算法对不同测试文档的训练结果相差较大.利用Boosting机制改进基于最大熵模型的分类算法,以提高该分类算法的稳定性.实验结果表明,该改进方法可以有效改善基于最大熵模型分类算法的稳定性,且分类精度也有一定... 基于最大熵模型的文本分类算法对不同测试文档的训练结果相差较大.利用Boosting机制改进基于最大熵模型的分类算法,以提高该分类算法的稳定性.实验结果表明,该改进方法可以有效改善基于最大熵模型分类算法的稳定性,且分类精度也有一定的提高. 展开更多
关键词 文本分类算法 最大熵模型 boosting算法 稳定性
在线阅读 下载PDF
基于机器学习的介入式葡萄糖传感器故障监测模型
18
作者 刘思行 许硕洋 +1 位作者 徐鹤 季一木 《计算机科学》 2025年第9期106-118,共13页
随着传感器技术的进步,血糖监测从传统的单点采集发展为连续动态监测(CGM),通过介入式葡萄糖传感器实时监测间质液葡萄糖浓度。血糖传感器的运行状态对监测准确性至关重要,但传感器故障识别面临类别不平衡问题,导致机器学习模型性能下... 随着传感器技术的进步,血糖监测从传统的单点采集发展为连续动态监测(CGM),通过介入式葡萄糖传感器实时监测间质液葡萄糖浓度。血糖传感器的运行状态对监测准确性至关重要,但传感器故障识别面临类别不平衡问题,导致机器学习模型性能下降。基于此,提出了一种结合数据预处理、特征工程和模型集成的优化策略。首先,通过缺失值填补和噪声处理提升数据的完整性和可靠性;其次,利用合成少数类过采样技术(SMOTE)对少数类样本进行过采样,缓解类别不平衡问题;最后,采用堆叠泛化(Stacking)的集成学习方法,结合基于焦点损失函数(Focal Loss)优化的极端梯度提升(XGBoost)和类别特征梯度提升(CatBoost)集成基分类器,与逻辑回归(LR)元分类器构建双层模型,进一步提升故障监测的准确性。为了证明所提出模型的有效性,将该模型的预测结果与其他模型进行了对比,包括基于Focal Loss的单一XGBoost,及其分别与SVM,KNN,LightGBM作为基分类器构建的集成模型等。研究结果表明,提出的基于Focal Loss的XGBoost和CatBoost模型在传感器故障分类任务中表现良好,PR曲线和ROC曲线效果均优于其他模型,精确度和召回率分别为0.9250和0.9238。 展开更多
关键词 传感器故障监测 堆叠泛化 集成学习 极端梯度提升 类别特征梯度提升
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部